Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ghayda M. Mirzaa is active.

Publication


Featured researches published by Ghayda M. Mirzaa.


Nature Genetics | 2012

De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes

Jean-Baptiste Rivière; Ghayda M. Mirzaa; Brian J. O'Roak; Margaret Beddaoui; Diana Alcantara; Robert Conway; Judith St-Onge; Jeremy Schwartzentruber; Karen W. Gripp; Sarah M. Nikkel; Christopher T. Sullivan; Thomas R Ward; Hailly Butler; Nancy Kramer; Beate Albrecht; Christine M. Armour; Linlea Armstrong; Oana Caluseriu; Cheryl Cytrynbaum; Beth A. Drolet; A. Micheil Innes; Julie Lauzon; Angela E. Lin; Grazia M.S. Mancini; Wendy S. Meschino; James Reggin; Anand Saggar; Tally Lerman-Sagie; Gökhan Uyanik; Rosanna Weksberg

Megalencephaly-capillary malformation (MCAP) and megalencephaly-polymicrogyria-polydactyly-hydrocephalus (MPPH) syndromes are sporadic overgrowth disorders associated with markedly enlarged brain size and other recognizable features. We performed exome sequencing in 3 families with MCAP or MPPH, and our initial observations were confirmed in exomes from 7 individuals with MCAP and 174 control individuals, as well as in 40 additional subjects with megalencephaly, using a combination of Sanger sequencing, restriction enzyme assays and targeted deep sequencing. We identified de novo germline or postzygotic mutations in three core components of the phosphatidylinositol 3-kinase (PI3K)-AKT pathway. These include 2 mutations in AKT3, 1 recurrent mutation in PIK3R2 in 11 unrelated families with MPPH and 15 mostly postzygotic mutations in PIK3CA in 23 individuals with MCAP and 1 with MPPH. Our data highlight the central role of PI3K-AKT signaling in vascular, limb and brain development and emphasize the power of massively parallel sequencing in a challenging context of phenotypic and genetic heterogeneity combined with postzygotic mosaicism.


Cell | 2014

A drosophila genetic resource of mutants to study mechanisms underlying human genetic diseases.

Shinya Yamamoto; Manish Jaiswal; Wu Lin Charng; Tomasz Gambin; Ender Karaca; Ghayda M. Mirzaa; Wojciech Wiszniewski; Hector Sandoval; Nele A. Haelterman; Bo Xiong; Ke Zhang; Vafa Bayat; Gabriela David; Tongchao Li; Kuchuan Chen; Upasana Gala; Tamar Harel; Davut Pehlivan; Samantha Penney; Lisenka E.L.M. Vissers; Joep de Ligt; Shalini N. Jhangiani; Yajing Xie; Stephen H. Tsang; Yesim Parman; Merve Sivaci; Esra Battaloglu; Donna M. Muzny; Ying Wooi Wan; Zhandong Liu

Invertebrate model systems are powerful tools for studying human disease owing to their genetic tractability and ease of screening. We conducted a mosaic genetic screen of lethal mutations on the Drosophila X chromosome to identify genes required for the development, function, and maintenance of the nervous system. We identified 165 genes, most of whose function has not been studied in vivo. In parallel, we investigated rare variant alleles in 1,929 human exomes from families with unsolved Mendelian disease. Genes that are essential in flies and have multiple human homologs were found to be likely to be associated with human diseases. Merging the human data sets with the fly genes allowed us to identify disease-associated mutations in six families and to provide insights into microcephaly associated with brain dysgenesis. This bidirectional synergism between fly genetics and human genomics facilitates the functional annotation of evolutionarily conserved genes involved in human health.


Brain | 2015

PI3K/AKT pathway mutations cause a spectrum of brain malformations from megalencephaly to focal cortical dysplasia

Laura A. Jansen; Ghayda M. Mirzaa; Gisele E. Ishak; Brian J. O'Roak; Joseph Hiatt; William H. Roden; Sonya A. Gunter; Susan L. Christian; Sarah Collins; Carissa Adams; Jean Baptiste Rivière; Judith St-Onge; Jeffrey G. Ojemann; Jay Shendure; Robert F. Hevner; William B. Dobyns

Malformations of cortical development containing dysplastic neuronal and glial elements, including hemimegalencephaly and focal cortical dysplasia, are common causes of intractable paediatric epilepsy. In this study we performed multiplex targeted sequencing of 10 genes in the PI3K/AKT pathway on brain tissue from 33 children who underwent surgical resection of dysplastic cortex for the treatment of intractable epilepsy. Sequencing results were correlated with clinical, imaging, pathological and immunohistological phenotypes. We identified mosaic activating mutations in PIK3CA and AKT3 in this cohort, including cancer-associated hotspot PIK3CA mutations in dysplastic megalencephaly, hemimegalencephaly, and focal cortical dysplasia type IIa. In addition, a germline PTEN mutation was identified in a male with hemimegalencephaly but no peripheral manifestations of the PTEN hamartoma tumour syndrome. A spectrum of clinical, imaging and pathological abnormalities was found in this cohort. While patients with more severe brain imaging abnormalities and systemic manifestations were more likely to have detected mutations, routine histopathological studies did not predict mutation status. In addition, elevated levels of phosphorylated S6 ribosomal protein were identified in both neurons and astrocytes of all hemimegalencephaly and focal cortical dysplasia type II specimens, regardless of the presence or absence of detected PI3K/AKT pathway mutations. In contrast, expression patterns of the T308 and S473 phosphorylated forms of AKT and in vitro AKT kinase activities discriminated between mutation-positive dysplasia cortex, mutation-negative dysplasia cortex, and non-dysplasia epilepsy cortex. Our findings identify PI3K/AKT pathway mutations as an important cause of epileptogenic brain malformations and establish megalencephaly, hemimegalencephaly, and focal cortical dysplasia as part of a single pathogenic spectrum.


American Journal of Medical Genetics Part A | 2012

Megalencephaly‐capillary malformation (MCAP) and megalencephaly‐polydactyly‐polymicrogyria‐hydrocephalus (MPPH) syndromes: Two closely related disorders of brain overgrowth and abnormal brain and body morphogenesis

Ghayda M. Mirzaa; Robert Conway; Karen W. Gripp; Tally Lerman-Sagie; Dawn H. Siegel; Linda S. deVries; Dorit Lev; Nancy Kramer; Elizabeth Hopkins; John M. Graham; William B. Dobyns

The macrocephaly‐capillary malformation syndrome (M‐CM), which we here propose to rename the megalencephaly‐capillary malformation syndrome (MCAP; alternatively the megalencephaly‐capillary malformation‐polymicrogyria syndrome), and the more recently described megalencephaly‐polymicrogyria‐polydactyly‐hydrocephalus syndrome (MPPH) are two megalencephaly (MEG) disorders that involve a unique constellation of physical and neuroimaging anomalies. We compare the features in 42 patients evaluated for physical and neuroimaging characteristics of MCAP and MPPH and propose a more global view of these syndromes based on classes of developmental abnormalities that include primary MEG and growth dysregulation, developmental vascular anomalies (primarily capillary malformations), distal limb anomalies (such as syndactyly and polydactyly), cortical brain malformations (most distinctively polymicrogyria, PMG), and variable connective tissue dysplasia. Based on these classes of developmental abnormalities, we propose that MCAP diagnostic criteria include progressive MEG with either vascular anomalies or syndactyly. In parallel, we propose that MPPH diagnostic criteria include progressive MEG and PMG, absence of the vascular anomalies and syndactyly characteristic of MCAP, and absence of brain heterotopia.


American Journal of Medical Genetics Part A | 2008

Consistent Chromosome Abnormalities Identify Novel Polymicrogyria Loci in 1p36.3, 2p16.1-p23.1, 4q21.21-q22.1, 6q26-q27, and 21q2

William B. Dobyns; Ghayda M. Mirzaa; Susan L. Christian; Kristin Petras; Jessica A. Roseberry; Gary D. Clark; Cynthia J. Curry; Donna M. McDonald-McGinn; Livija Medne; Elaine H. Zackai; Julie Parsons; Dina J. Zand; Fuki M. Hisama; Christopher A. Walsh; Richard J. Leventer; Christa Lese Martin; Marzena Gajecka; Lisa G. Shaffer

Polymicrogyria is a malformation of cortical development characterized by loss of the normal gyral pattern, which is replaced by many small and infolded gyri separated by shallow, partly fused sulci, and loss of middle cortical layers. The pathogenesis is unknown, yet emerging data supports the existence of several loci in the human genome. We report on the clinical and brain imaging features, and results of cytogenetic and molecular genetic studies in 29 patients with polymicrogyria associated with structural chromosome rearrangements. Our data map new polymicrogyria loci in chromosomes 1p36.3, 2p16.1–p23, 4q21.21–q22.1, 6q26–q27, and 21q21.3–q22.1, and possible loci in 1q44 and 18p as well. Most and possibly all of these loci demonstrate incomplete penetrance and variable expressivity. We anticipate that these data will serve as the basis for ongoing efforts to identify the causal genes located in these regions.


JAMA Neurology | 2016

Association of MTOR Mutations With Developmental Brain Disorders, Including Megalencephaly, Focal Cortical Dysplasia, and Pigmentary Mosaicism

Ghayda M. Mirzaa; Catarina D. Campbell; Nadia Solovieff; Carleton Goold; Laura A. Jansen; Suchithra Menon; Andrew E. Timms; Valerio Conti; Jonathan D. Biag; Carissa Olds; Evan A. Boyle; Sarah Collins; Gisele Ishak; Sandra L. Poliachik; Katta M. Girisha; Kit San Yeung; Brian Hon-Yin Chung; Elisa Rahikkala; Sonya A. Gunter; Sharon S. McDaniel; Colleen Forsyth Macmurdo; Jonathan A. Bernstein; Beth Martin; Rebecca J. Leary; Scott Mahan; Shanming Liu; Molly Weaver; Michael O. Dorschner; Shalini N. Jhangiani; Donna M. Muzny

IMPORTANCE Focal cortical dysplasia (FCD), hemimegalencephaly, and megalencephaly constitute a spectrum of malformations of cortical development with shared neuropathologic features. These disorders are associated with significant childhood morbidity and mortality. OBJECTIVE To identify the underlying molecular cause of FCD, hemimegalencephaly, and diffuse megalencephaly. DESIGN, SETTING, AND PARTICIPANTS Patients with FCD, hemimegalencephaly, or megalencephaly (mean age, 11.7 years; range, 2-32 years) were recruited from Pediatric Hospital A. Meyer, the University of Hong Kong, and Seattle Childrens Research Institute from June 2012 to June 2014. Whole-exome sequencing (WES) was performed on 8 children with FCD or hemimegalencephaly using standard-depth (50-60X) sequencing in peripheral samples (blood, saliva, or skin) from the affected child and their parents and deep (150-180X) sequencing in affected brain tissue. Targeted sequencing and WES were used to screen 93 children with molecularly unexplained diffuse or focal brain overgrowth. Histopathologic and functional assays of phosphatidylinositol 3-kinase-AKT (serine/threonine kinase)-mammalian target of rapamycin (mTOR) pathway activity in resected brain tissue and cultured neurons were performed to validate mutations. MAIN OUTCOMES AND MEASURES Whole-exome sequencing and targeted sequencing identified variants associated with this spectrum of developmental brain disorders. RESULTS Low-level mosaic mutations of MTOR were identified in brain tissue in 4 children with FCD type 2a with alternative allele fractions ranging from 0.012 to 0.086. Intermediate-level mosaic mutation of MTOR (p.Thr1977Ile) was also identified in 3 unrelated children with diffuse megalencephaly and pigmentary mosaicism in skin. Finally, a constitutional de novo mutation of MTOR (p.Glu1799Lys) was identified in 3 unrelated children with diffuse megalencephaly and intellectual disability. Molecular and functional analysis in 2 children with FCD2a from whom multiple affected brain tissue samples were available revealed a mutation gradient with an epicenter in the most epileptogenic area. When expressed in cultured neurons, all MTOR mutations identified here drive constitutive activation of mTOR complex 1 and enlarged neuronal size. CONCLUSIONS AND RELEVANCE In this study, mutations of MTOR were associated with a spectrum of brain overgrowth phenotypes extending from FCD type 2a to diffuse megalencephaly, distinguished by different mutations and levels of mosaicism. These mutations may be sufficient to cause cellular hypertrophy in cultured neurons and may provide a demonstration of the pattern of mosaicism in brain and substantiate the link between mosaic mutations of MTOR and pigmentary mosaicism in skin.


American Journal of Medical Genetics Part C-seminars in Medical Genetics | 2013

Megalencephaly Syndromes and Activating Mutations in the PI3K-AKT Pathway: MPPH and MCAP

Ghayda M. Mirzaa; Jean-Baptiste Rivière; William B. Dobyns

The megalencephaly‐polymicrogyria‐polydactyly‐hydrocephalus (MPPH) and megalencephaly‐capillary malformation (MCAP) syndromes are highly recognizable and partly overlapping disorders of brain overgrowth (megalencephaly). Both syndromes are characterized by congenital or early postnatal megalencephaly, with a high risk for progressive ventriculomegaly leading to hydrocephalus and cerebellar tonsillar ectopia leading to Chiari malformation, and cortical brain abnormalities, specifically polymicrogyria. MCAP is further characterized by distinct cutaneous capillary malformations, finger or toe syndactyly, postaxial polydactyly, variable connective tissue dysplasia and mild focal or segmental body overgrowth, among other features. MPPH, on the other hand, lacks consistent vascular or somatic manifestations besides postaxial polydactyly in almost half of reported individuals. We identified de novo germline mutations in PIK3R2 and AKT3 in individuals with MPPH, and both postzygotic, mosaic and rare germline mutations in PIK3CA in individuals with MCAP. PIK3R2, AKT3, and PIK3CA are members of the critical phosphatidylinositol‐3‐kinase (PI3K)‐vakt murine thymoma viral oncogene homolog (AKT) pathway that is well implicated in cell growth, proliferation, survival, apoptosis, among other diverse cellular functions. The identified mutations in these three genes have been shown to lead to gain of function and activation of the PI3K‐AKT pathway. Germline and postzygotic mutations of PIK3CA and other PI3K‐AKT‐mTOR pathway genes have also been identified in several other overgrowth syndromes, highlighting the key role of this signaling pathway in normal development and pathophysiology of a large group of congenital anomalies.


Nature Genetics | 2013

Mutations in STAMBP, encoding a deubiquitinating enzyme, cause microcephaly-capillary malformation syndrome

Laura M McDonell; Ghayda M. Mirzaa; Diana Alcantara; Jeremy Schwartzentruber; Melissa T. Carter; Leo J. Lee; Carol L. Clericuzio; John M. Graham; Deborah J. Morris-Rosendahl; Tilman Polster; Gyula Acsadi; Sharron Townshend; Simon Williams; Anne Halbert; Bertrand Isidor; Albert David; Christopher D. Smyser; Alex R. Paciorkowski; Marcia C. Willing; John Woulfe; Soma Das; Chandree L. Beaulieu; Janet Marcadier; Michael T. Geraghty; Brendan J. Frey; Jacek Majewski; Dennis E. Bulman; William B. Dobyns; Mark O'Driscoll; Kym M. Boycott

Microcephaly–capillary malformation (MIC-CAP) syndrome is characterized by severe microcephaly with progressive cortical atrophy, intractable epilepsy, profound developmental delay and multiple small capillary malformations on the skin. We used whole-exome sequencing of five patients with MIC-CAP syndrome and identified recessive mutations in STAMBP, a gene encoding the deubiquitinating (DUB) isopeptidase STAMBP (STAM-binding protein, also known as AMSH, associated molecule with the SH3 domain of STAM) that has a key role in cell surface receptor–mediated endocytosis and sorting. Patient cell lines showed reduced STAMBP expression associated with accumulation of ubiquitin-conjugated protein aggregates, elevated apoptosis and insensitive activation of the RAS-MAPK and PI3K-AKT-mTOR pathways. The latter cellular phenotype is notable considering the established connection between these pathways and their association with vascular and capillary malformations. Furthermore, our findings of a congenital human disorder caused by a defective DUB protein that functions in endocytosis implicates ubiquitin-conjugate aggregation and elevated apoptosis as factors potentially influencing the progressive neuronal loss underlying MIC-CAP syndrome.


Nature Genetics | 2014

De novo CCND2 mutations leading to stabilization of cyclin D2 cause megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome

Ghayda M. Mirzaa; David A. Parry; Andrew E. Fry; Kristin A Giamanco; Jeremy Schwartzentruber; Megan R. Vanstone; Clare V. Logan; Nicola Roberts; Colin A Johnson; Shawn Singh; Stanislav Kholmanskikh; Carissa Adams; Rebecca D. Hodge; Robert F. Hevner; David T. Bonthron; Kees P. J. Braun; Laurence Faivre; Jean-Baptiste Rivière; Judith St-Onge; Karen W. Gripp; Grazia M.S. Mancini; Ki Pang; Elizabeth Sweeney; Hilde Van Esch; Nienke E. Verbeek; Dagmar Wieczorek; Michelle Steinraths; Jacek Majewski; Kym M. Boycott; Daniela T. Pilz

Activating mutations in genes encoding phosphatidylinositol 3-kinase (PI3K)-AKT pathway components cause megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome (MPPH, OMIM 603387). Here we report that individuals with MPPH lacking upstream PI3K-AKT pathway mutations carry de novo mutations in CCND2 (encoding cyclin D2) that are clustered around a residue that can be phosphorylated by glycogen synthase kinase 3β (GSK-3β). Mutant CCND2 was resistant to proteasomal degradation in vitro compared to wild-type CCND2. The PI3K-AKT pathway modulates GSK-3β activity, and cells from individuals with PIK3CA, PIK3R2 or AKT3 mutations showed similar CCND2 accumulation. CCND2 was expressed at higher levels in brains of mouse embryos expressing activated AKT3. In utero electroporation of mutant CCND2 into embryonic mouse brains produced more proliferating transfected progenitors and a smaller fraction of progenitors exiting the cell cycle compared to cells electroporated with wild-type CCND2. These observations suggest that cyclin D2 stabilization, caused by CCND2 mutation or PI3K-AKT activation, is a unifying mechanism in PI3K-AKT–related megalencephaly syndromes.


American Journal of Medical Genetics Part C-seminars in Medical Genetics | 2014

Megalencephaly and hemimegalencephaly: Breakthroughs in molecular etiology

Ghayda M. Mirzaa; Annapurna Poduri

Megalencephaly (MEG) is a developmental disorder characterized by brain overgrowth that occurs due to either increased number or size of neurons and glial cells. The former may be due to either increased neuronal proliferation or decreased apoptosis. The degree of brain overgrowth may be extensive, ranging from generalized MEG affecting the entire cortex–as with mutations in PTEN (phosphatase and tensin homolog on chromosome ten)–to unilateral hemispheric malformations–as in classic hemimegalencephaly (HME). On the other hand, some lesions are more focal or segmental. These developmental brain abnormalities may occur in isolation in some individuals, whereas others occur in the context of a syndrome involving dysmorphic features, skin findings, or other organ system involvement. Brain overgrowth disorders are often associated with malformations of cortical development, resulting in increased risk of epilepsy, intellectual disability, and autistic features, and some are associated with hydrocephalus. The past few years have witnessed a dramatic leap in our understanding of the molecular basis of brain overgrowth, particularly the identification of mosaic (or post‐zygotic) mutations in core components of key cellular pathways such as the phosphatidylinositol 3‐kinase (PI3K)‐vakt murine thymoma viral oncogene homolog (AKT)‐mTOR pathway. These molecular insights have broadened our view of brain overgrowth disorders that now appear to span a wide spectrum of overlapping phenotypic, neuroimaging, and neuropathologic features and molecular pathogenesis. These molecular advances also bring to light the possibility of pathway‐based therapies for these often medically devastating developmental disorders.

Collaboration


Dive into the Ghayda M. Mirzaa's collaboration.

Top Co-Authors

Avatar

William B. Dobyns

Seattle Children's Research Institute

View shared research outputs
Top Co-Authors

Avatar

Robert Conway

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

John M Graham

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Alex R. Paciorkowski

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar

Sarah Collins

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Kym M. Boycott

Children's Hospital of Eastern Ontario

View shared research outputs
Top Co-Authors

Avatar

Karen W. Gripp

Alfred I. duPont Hospital for Children

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Melissa T. Carter

Children's Hospital of Eastern Ontario

View shared research outputs
Top Co-Authors

Avatar

Andrew E. Timms

Seattle Children's Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge