Ghazanfar Abbas
COMSATS Institute of Information Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ghazanfar Abbas.
Energy and Environmental Science | 2011
Haiying Qin; Zhigang Zhu; Qinghua Liu; Yifu Jing; Rizwan Raza; Syed Khalid Imran; Manish Pratap Singh; Ghazanfar Abbas; Bin Zhu
A low-temperature solid oxide fuel cell system was developed to use bioethanol and glycerol as fuels directly. This system achieved a maximum power density of 215 mW cm−2 by using glycerol at 580 °C and produced a great impact on sustainable energy and the environment.
Journal of Fuel Cell Science and Technology | 2011
Ghazanfar Abbas; Rizwan Raza; M. Ashraf Chaudhry; Bin Zhu
The entire worlds challenge is to find out the renewable energy sources due to rapid depletion of fossil fuels because of their high consumption. Solid Oxide Fuel Cells (SOFCs) are believed to be ...
Journal of Fuel Cell Science and Technology | 2011
Syed Khalid Imran; Rizwan Raza; Ghazanfar Abbas; Bin Zhu
Bio-ethanol based fuel cell is an energy source with a promising future. The low temperature solid oxide fuel cell fed by direct bio-ethanol is receiving considerable attention as a clean and highly efficient for the production of both electricity and high grade waste heat. The comparison of fuel cell performance with different metal-oxide based electrodes was investigated. The power densities of 584 mW cm(-2) and 514 mW cm(-2) at 520 degrees C and 570 degrees C respectively were found. The effect of electrode catalyst function, ethanol concentration on the electrical performance was investigated at different temperature ranged in between 300 degrees C-600 degrees C. The effect of deposited carbon on the electrode was investigated by energy-dispersive X-ray spectroscopy and scanning electron microscope after testing the cell with bio-ethanol.
Applied Physics Letters | 2015
Rizwan Raza; Akhlaq Ahmed; Nadeem Akram; Muhammad Saleem; Majid Niaz Akhtar; Tauqir A. Sherazi; M. Ajmal Khan; Ghazanfar Abbas; Imran Shakir; Munazza Mohsin; Farah Alvi; Muhammad Sufyan Javed; M. Yasir Rafique; Bin Zhu
In the present work, cost-effective nanocomposite electrolyte (Ba-SDC) oxide is developed for efficient low-temperature solid oxide fuel cells (LTSOFCs). Analysis has shown that dual phase conduction of O−2 (oxygen ions) and H+ (protons) plays a significant role in the development of advanced LTSOFCs. Comparatively high proton ion conductivity (0.19 s/cm) for LTSOFCs was achieved at low temperature (460 °C). In this article, the ionic conduction behaviour of LTSOFCs is explained by carrying out electrochemical impedance spectroscopy measurements. Further, the phase and structure analysis are investigated by X-ray diffraction and scanning electron microscopy techniques. Finally, we achieved an ionic transport number of the composite electrolyte for LTSOFCs as high as 0.95 and energy and power density of 90% and 550 mW/cm2, respectively, after sintering the composite electrolyte at 800 °C for 4 h, which is promising. Our current effort toward the development of an efficient, green, low-temperature solid oxi...
Journal of Fuel Cell Science and Technology | 2011
Rizwan Raza; Ghazanfar Abbas; S. Khalid Imran; Imran Patel; Bin Zhu
An oxide based two phase nanocomposite electrolyte (Ce0.9Gd0.1O2) was synthesized by a co-precipitation method and coated with Yttrium oxide (Y2O3). The nanocomposite electrolyte showed the significant performance of power density 750mW/cm(2) and higher conductivities at relatively low temperature 550 degrees C. Ionic conductivities were measured with electrochemical impedance spectroscopy (EIS) and DC (4 probe method). The structural and morphological properties of the prepared electrolyte were investigated by means of High Resolution Scanning Electron Microscopy (HRSEM). The thermal stability was determined with Differential Scanning Calorimetry (DSC). The particle size was calculated with Scherrer formula and compare with SEM results, 15-20 nm is in a good agreement with the SEM and X-ray diffraction (XRD) results. The purpose of the study to introduce the functional nanocomposite materials, for advanced fuel cell technology (NANOCOFC) to meet the challenges of solid oxide fuel cell (SOFC).
International Journal of Modern Physics B | 2016
M. Jafar Hussain; Rizwan Raza; Mukhtar Ahmad; Akbar Ali; Imran Shafiq Ahmad; Waqar Adil Syed; Naveed Kausar Janjua; M. Anis-ur-Rehman; M. Ajmal Khan; Shaukat A. Shahid; Ghazanfar Abbas
Fuel cell is undoubtedly widespread energy conversion technology, which can convert fuel (biogas) energy into electricity. Solid oxide fuel cell (SOFC) is one of the best choices among the fuel cell’s family due to high efficiency and fuel flexibility. In this study, zinc-based nanostructured Mn0.20FexZn0.80−xOδ electrode materials were successfully developed by solid state reaction. The proposed materials have been characterized by XRD and SEM. The electrical conductivities have been examined by four-probe DC method in the temperature range of 300–600∘C, the maximum values were recorded and found to be 12.019 and 5.106 S/cm at natural gas and air atmosphere, respectively. The electrochemical performance has been measured employing NK-SDC electrolyte material and their current density versus voltage and current density versus power density (I-V and I-P characteristics) have been drawn. The maximum power density was found to be 170 mW/cm2 using natural gas as a bio-fuel over a temperature of 600∘C.
ACS Applied Materials & Interfaces | 2018
Amjad Ali; Asia Rafique; Muhammad Kaleemullah; Ghazanfar Abbas; M. Ajmal Khan; M. Ashfaq Ahmad; Rizwan Raza
Samarium-doped ceria (SDC) carbonate has become an attractive electrolyte for fuel cells because of its remarkable ion conductivity and high performance. Different doped ceria-carbonate (single-carbonate SDC, binary-carbonate SDC, and ternary-carbonate SDC) electrolytes were synthesized by the coprecipitation/oxalate method, to optimize the electrochemical performance. The structure; morphology; and thermal, optical, and surface properties have been studied using a variety of techniques. The X-ray diffraction results confirmed the successful incorporation of samarium into ceria as a crystalline structure and inclusion of carbonate, which is amorphous in nature. To analyze the conduction mechanism, direct current conductivity was measured in a H2/O2 atmosphere. Doped ceria-binary carbonate ((Li/Na)CO3-SDC) showed the best conductivity of 0.31 S cm-1 and power density of 617 mW cm-2, at 600 °C. The enhancement in the ionic conductivity and performance of the composites is due to the contribution of hybrid ions (O2-, H+). The crystallite size of the composites was in the range 21-41 nm. For the calculation of band gaps, optical absorption spectra of the synthesized powders were analyzed, and they showed a red shift with the band gap energy in the range 2.6-3.01 eV, when compared to that of pure ceria (3.20 eV).
Nanomaterials | 2017
Fozia Shaheen; Muhammad Hammad Aziz; Muhammad Fakhar-e-Alam; M. Atif; Mahvish Fatima; R. Ahmad; Atif Hanif; Saqib Anwar; Fatima Zafar; Ghazanfar Abbas; Syed Mansoor Ali; Mukhtar Ahmed
Graphene-based materials have garnered significant attention because of their versatile bioapplications and extraordinary properties. Graphene oxide (GO) is an extremely oxidized form of graphene accompanied by the functional groups of oxygen on its surface. GO is an outstanding platform on which to pacify silver nanoparticles (Ag NPs), which gives rise to the graphene oxide-silver nanoparticle (GO-Ag) nanocomposite. In this experimental study, the toxicity of graphene oxide-silver (GO-Ag) nanocomposites was assessed in an in vitro human breast cancer model to optimize the parameters of photodynamic therapy. GO-Ag was prepared using the hydrothermal method, and characterization was done by X-ray diffraction, field-emission scanning electron microscope (FE-SEM), transmission Electron Microscopy (TEM), energy dispersive X-rays Analysis (EDAX), atomic force microscopy and ultraviolet-visible spectroscopy. The experiments were done both with laser exposure, as well as in darkness, to examine the phototoxicity and cytotoxicity of the nanocomposites. The cytotoxicity of the GO-Ag was confirmed via a methyl-thiazole-tetrazolium (MTT) assay and intracellular reactive oxygen species production analysis. The phototoxic effect explored the dose-dependent decrease in the cell viability, as well as provoked cell death via apoptosis. An enormously significant escalation of 1O2 in the samples when exposed to daylight was perceived. Statistical analysis was performed on the experimental results to confirm the worth and clarity of the results, with p-values < 0.05 selected as significant. These outcomes suggest that GO-Ag nanocomposites could serve as potential candidates for targeted breast cancer therapy.
Iranian Polymer Journal | 2018
Faizah Altaf; Rida Batool; M. Ashfaq Ahmad; Rizwan Raza; M. Ajmal Khan; Ghazanfar Abbas
An environmental-friendly synthesis of polymer clay nanocomposites (PCNs) was carried out by incorporation of nanoclay into polymer matrix for their potential application as sorbent of metals present in aqueous media. Polyacrylonitrile was chemically grafted onto 77% vinyl triethoxysilane-modified sepiolite. The polymerization was carried out with benzoyl peroxide (BPO, C14H10O4) initiator in three different weight ratios of 1.0, 2.0, and 3.0%. The maximum polymer grafting of about 83% was obtained in nanocomposite initiated by 2.0% ratio of BPO. The surface modification of nanocomposites was carried out using hydroxyl amine hydrochloride (NH2OH·HCl). The prepared nanocomposites were characterized by Fourier transform infrared spectroscopy, X-ray diffractometry, thermogravimetric analysis, and Brunauer–Emmett–Teller technique. The copper removal tendency of nanocomposites was studied by atomic absorption spectroscopy. The maximum adsorption of copper was 86%, which could be achieved by nanocomposites synthesized with 2% initiator. The results have revealed the practical potential of the prepared PCN as efficient adsorbents.
International Journal of Modern Physics B | 2017
Ghazanfar Abbas; Rizwan Raza; M. Ashfaq Ahmad; M. Ajmal Khan; M. Jafar Hussain; Mukhtar Ahmad; Hammad Aziz; Imran Shafiq Ahmad; Rida Batool; Faizah Altaf; Bin Zhu
Zinc-based nanostructured nickel (Ni) free metal oxide electrode material Zn0.60/Cu0.20Mn0.20 oxide (CMZO) was synthesized by solid state reaction and investigated for low temperature solid oxide fuel cell (LTSOFC) applications. The crystal structure and surface morphology of the synthesized electrode material were examined by XRD and SEM techniques respectively. The particle size of ZnO phase estimated by Scherer’s equation was 31.50 nm. The maximum electrical conductivity was found to be 12.567 S/cm and 5.846 S/cm in hydrogen and air atmosphere, respectively at 600∘C. The activation energy of the CMZO material was also calculated from the DC conductivity data using Arrhenius plots and it was found to be 0.060 and 0.075 eV in hydrogen and air atmosphere, respectively. The CMZO electrode-based fuel cell was tested using carbonated samarium doped ceria composite (NSDC) electrolyte. The three layers 13 mm in diameter and 1 mm thickness of the symmetric fuel cell were fabricated by dry pressing. The maximum power density of 728.86 mW/cm2 was measured at 550∘C.