Ghislain Bernard Maquer
University of Bern
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ghislain Bernard Maquer.
Journal of Bone and Mineral Research | 2015
Ghislain Bernard Maquer; Sarah N. Musy; Jasmin Wandel; Thomas Gross; Philippe Zysset
As our population ages, more individuals suffer from osteoporosis. This disease leads to impaired trabecular architecture and increased fracture risk. It is essential to understand how morphological and mechanical properties of the cancellous bone are related. Morphology‐elasticity relationships based on bone volume fraction (BV/TV) and fabric anisotropy explain up to 98% of the variation in elastic properties. Yet, other morphological variables such as individual trabeculae segmentation (ITS) and trabecular bone score (TBS) could improve the stiffness predictions. A total of 743 micro–computed tomography (μCT) reconstructions of cubic trabecular bone samples extracted from femur, radius, vertebrae, and iliac crest were analyzed. Their morphology was assessed via 25 variables and their stiffness tensor ( CFE ) was computed from six independent load cases using micro finite element (μFE) analyses. Variance inflation factors were calculated to evaluate collinearity between morphological variables and decide upon their inclusion in morphology‐elasticity relationships. The statistically admissible morphological variables were included in a multiple linear regression model of the dependent variable CFE . The contribution of each independent variable was evaluated (ANOVA). Our results show that BV/TV is the best determinant of CFE (r2adj = 0.889), especially in combination with fabric anisotropy (r2adj = 0.968). Including the other independent predictors hardly affected the amount of variance explained by the model (r2adj = 0.975). Across all anatomical sites, BV/TV explained 87% of the variance of the bone elastic properties. Fabric anisotropy further described 10% of the bone stiffness, but the improvement in variance explanation by adding other independent factors was marginal (<1%). These findings confirm that BV/TV and fabric anisotropy are the best determinants of trabecular bone stiffness and show, against common belief, that other morphological variables do not bring any further contribution. These overall conclusions remain to be confirmed for specific bone diseases and postelastic properties.
Journal of Biomechanics | 2014
Yongtao Lu; Ghislain Bernard Maquer; Oleg Museyko; Klaus Püschel; Klaus Engelke; Philippe Zysset; Michael M. Morlock; Gerd Huber
Quantitative computer tomography (QCT)-based finite element (FE) models of vertebral body provide better prediction of vertebral strength than dual energy X-ray absorptiometry. However, most models were validated against compression of vertebral bodies with endplates embedded in polymethylmethalcrylate (PMMA). Yet, loading being as important as bone density, the absence of intervertebral disc (IVD) affects the strength. Accordingly, the aim was to assess the strength predictions of the classic FE models (vertebral body embedded) against the in vitro and in silico strengths of vertebral bodies loaded via IVDs. High resolution peripheral QCT (HR-pQCT) were performed on 13 segments (T11/T12/L1). T11 and L1 were augmented with PMMA and the samples were tested under a 4° wedge compression until failure of T12. Specimen-specific model was generated for each T12 from the HR-pQCT data. Two FE sets were created: FE-PMMA refers to the classical vertebral body embedded model under axial compression; FE-IVD to their loading via hyperelastic IVD model under the wedge compression as conducted experimentally. Results showed that FE-PMMA models overestimated the experimental strength and their strength prediction was satisfactory considering the different experimental set-up. On the other hand, the FE-IVD models did not prove significantly better (Exp/FE-PMMA: R²=0.68; Exp/FE-IVD: R²=0.71, p=0.84). In conclusion, FE-PMMA correlates well with in vitro strength of human vertebral bodies loaded via real IVDs and FE-IVD with hyperelastic IVDs do not significantly improve this correlation. Therefore, it seems not worth adding the IVDs to vertebral body models until fully validated patient-specific IVD models become available.
Journal of Bone and Mineral Research | 2016
Ghislain Bernard Maquer; Yongtao Lu; Enrico Dall'Ara; Yan Chevalier; Matthias Krause; Lang Yang; Richard Eastell; Kurt Lippuner; Philippe Zysset
Trabecular bone score (TBS) rests on the textural analysis of dual‐energy X‐ray absorptiometry (DXA) to reflect the decay in trabecular structure characterizing osteoporosis. Yet, its discriminative power in fracture studies remains incomprehensible because prior biomechanical tests found no correlation with vertebral strength. To verify this result possibly owing to an unrealistic setup and to cover a wide range of loading scenarios, the data from three previous biomechanical studies using different experimental settings were used. They involved the compressive failure of 62 human lumbar vertebrae loaded 1) via intervertebral discs to mimic the in vivo situation (“full vertebra”); 2) via the classical endplate embedding (“vertebral body”); or 3) via a ball joint to induce anterior wedge failure (“vertebral section”). High‐resolution peripheral quantitative computed tomography (HR‐pQCT) scans acquired from prior testing were used to simulate anterior‐posterior DXA from which areal bone mineral density (aBMD) and the initial slope of the variogram (ISV), the early definition of TBS, were evaluated. Finally, the relation of aBMD and ISV with failure load (Fexp) and apparent failure stress (σexp) was assessed, and their relative contribution to a multilinear model was quantified via ANOVA. We found that, unlike aBMD, ISV did not significantly correlate with Fexp and σexp, except for the “vertebral body” case (r2 = 0.396, p = 0.028). Aside from the “vertebra section” setup where it explained only 6.4% of σexp (p = 0.037), it brought no significant improvement to aBMD. These results indicate that ISV, a replica of TBS, is a poor surrogate for vertebral strength no matter the testing setup, which supports the prior observations and raises a fortiori the question of the deterministic factors underlying the statistical relationship between TBS and vertebral fracture risk.
Medical Engineering & Physics | 2015
Allison Loretta Clouthier; Hadi Seyed Hosseini; Ghislain Bernard Maquer; Philippe Zysset
Vertebral compression fractures are becoming increasingly common. Patient-specific nonlinear finite element (FE) models have shown promise in predicting yield strength and damage pattern but have not been experimentally validated for clinically relevant vertebral fractures, which involve loading through intervertebral discs with varying degrees of degeneration up to large compressive strains. Therefore, stepwise axial compression was applied in vitro on segments and performed in silico on their FE equivalents using a nonlocal damage-plastic model including densification at large compression for bone and a time-independent hyperelastic model for the disc. The ability of the nonlinear FE models to predict the failure pattern in large compression was evaluated for three boundary conditions: healthy and degenerated intervertebral discs and embedded endplates. Bone compaction and fracture patterns were predicted using the local volume change as an indicator and the best correspondence was obtained for the healthy intervertebral discs. These preliminary results show that nonlinear finite element models enable prediction of bone localisation and compaction. To the best of our knowledge, this is the first study to predict the collapse of osteoporotic vertebral bodies up to large compression using realistic loading via the intervertebral discs.
Journal of The Mechanical Behavior of Biomedical Materials | 2015
Ghislain Bernard Maquer; Johann Jakob Schwiedrzik; Gerd Huber; Michael M. Morlock; Philippe Zysset
Computer tomography (CT)-based finite element (FE) models assess vertebral strength better than dual energy X-ray absorptiometry. Osteoporotic vertebrae are usually loaded via degenerated intervertebral discs (IVD) and potentially at higher risk under forward bending, but the influences of the IVD and loading conditions are generally overlooked. Accordingly, magnetic resonance imaging was performed on 14 lumbar discs to generate FE models for the healthiest and most degenerated specimens. Compression, torsion, bending, flexion and extension conducted experimentally were used to calibrate both models. They were combined with CT-based FE models of 12 lumbar vertebral bodies to evaluate the effect of disc degeneration compared to a loading via endplates embedded in a stiff resin, the usual experimental paradigm. Compression and lifting were simulated, load and damage pattern were evaluated at failure. Adding flexion to the compression (lifting) and higher disc degeneration reduces the failure load (8-14%, 5-7%) and increases damage in the vertebrae. Under both loading scenarios, decreasing the disc height slightly increases the failure load; embedding and degenerated IVD provides respectively the highest and lowest failure load. Embedded vertebrae are more brittle, but failure loads induced via IVDs correlate highly with vertebral strength. In conclusion, osteoporotic vertebrae with degenerated IVDs are consistently weaker-especially under lifting, but clinical assessment of their strength is possible via FE analysis without extensive disc modelling, by extrapolating measures from the embedded situation.
Computer Methods in Biomechanics and Biomedical Engineering | 2014
Ghislain Bernard Maquer; Johann Jakob Schwiedrzik; Philippe Zysset
Computer tomography (CT)-based finite element (FE) models of vertebral bodies assess fracture load in vitro better than dual energy X-ray absorptiometry, but boundary conditions affect stress distribution under the endplates that may influence ultimate load and damage localisation under post-yield strains. Therefore, HRpQCT-based homogenised FE models of 12 vertebral bodies were subjected to axial compression with two distinct boundary conditions: embedding in polymethylmethalcrylate (PMMA) and bonding to a healthy intervertebral disc (IVD) with distinct hyperelastic properties for nucleus and annulus. Bone volume fraction and fabric assessed from HRpQCT data were used to determine the elastic, plastic and damage behaviour of bone. Ultimate forces obtained with PMMA were 22% higher than with IVD but correlated highly (R2 = 0.99). At ultimate force, distinct fractions of damage were computed in the endplates (PMMA: 6%, IVD: 70%), cortex and trabecular sub-regions, which confirms previous observations that in contrast to PMMA embedding, failure initiated underneath the nuclei in healthy IVDs. In conclusion, axial loading of vertebral bodies via PMMA embedding versus healthy IVD overestimates ultimate load and leads to distinct damage localisation and failure pattern.
Journal of Biomechanics | 2012
Ghislain Bernard Maquer; Enrico Dall'Ara; Philippe Zysset
Every year, 500,000 osteoporotic vertebral compression fractures occur in Europe. Quantitative computed tomography (QCT)-based finite element (FE) voxel models predict ultimate force whether they simulate vertebral bodies embedded in polymethylmethacrylate (PMMA) or vertebral sections with both endplates removed. To assess the effect of endplate removal in those predictions, non-linear FE analyses of QCT-based voxel models of human vertebral bodies were performed. High resolution pQCT images of 11 human lumbar vertebrae without posterior elements were coarsened to clinical resolution and bone volume fraction was used to determine the elastic, plastic and damage behavior of bone tissue. Three model boundary conditions (BCs) were chosen: the endplates were cropped (BC1, BC2) or voxel layers were added on the intact vertebrae to mimic embedding (BC3). For BC1 and BC3, the bottom nodes were fully constrained and the top nodes were constrained transversely while both node sets were freed transversely for BC2. Axial displacement was prescribed to the top nodes. In each model, we compared ultimate force and damage distribution during post-yield loading. The results showed that ultimate forces obtained with BC3 correlated perfectly with those computed with BC1 (R(2)=0.9988) and BC2 (R(2)=0.9987), but were in average 3.4% lower and 6% higher respectively. Moreover, good correlation of damage distribution calculated for BC3 was found with those of BC1 (R(2)=0.92) and BC2 (R(2)=0.73). This study demonstrated that voxel models of vertebral sections provide the same ultimate forces and damage distributions as embedded vertebral bodies, but with less preprocessing and computing time required.
Clinical Orthopaedics and Related Research | 2016
Ghislain Bernard Maquer; Alexander Bürki; Katja Nuss; Philippe Zysset; Moritz Tannast
BackgroundOsteochondroplasty of the head-neck region is performed on patients with cam femoroacetabular impingement (FAI) without fully understanding its repercussion on the integrity of the femur. Cam-type FAI can be surgically and reproducibly induced in the ovine femur, which makes it suitable for studying corrective surgery in a consistent way. Finite element models built on quantitative CT (QCT) are computer tools that can be used to predict femoral strength and evaluate the mechanical effect of surgical correction.Questions/purposesWe asked: (1) What is the effect of a resection of the superolateral aspect of the ovine femoral head-neck junction on failure load? (2) How does the failure load after osteochondroplasty compare with reported forces from activities of daily living in sheep? (3) How do failure loads and failure locations from the computer simulations compare with the experiments?MethodsOsteochondroplasties (3, 6, 9 mm) were performed on one side of 18 ovine femoral pairs with the contralateral intact side as a control. The 36 femurs were scanned via QCT from which specimen-specific computer models were built. Destructive compression tests then were conducted experimentally using a servohydraulic testing system and numerically via the computer models. Safety factors were calculated as the ratio of the maximal force measured in vivo by telemeterized hip implants during the sheep’s walking and running activities to the failure load. The simulated failure loads and failure locations from the computer models were compared with the experimental results.ResultsFailure loads were reduced by 5% (95% CI, 2%–8%) for the 3-mm group (p = 0.0089), 10% (95% CI, 6%–14%) for the 6-mm group (p = 0.0015), and 19% (95% CI, 13%–26%) for the 9-mm group (p = 0.0097) compared with the controls. Yet, the weakest specimen still supported more than 2.4 times the peak load during running. Strong correspondence was found between the simulated and experimental failure loads (R2 = 0.83; p < 0.001) and failure locations.ConclusionsThe resistance of ovine femurs to fracture decreased with deeper resections. However, under in vitro testing conditions, the effect on femoral strength remains small even after 9 mm correction, suggesting that femoral head-neck osteochondroplasty could be done safely on the ovine femur. QCT-based finite element models were able to predict weakening of the femur resulting from the osteochondroplasty.Clinical RelevanceThe ovine femur provides a seemingly safe platform for scientific evaluation of FAI. It also appears that computer models based on preoperative CT scans may have the potential to provide patient-specific guidelines for preventing overcorrection of cam FAI.
Bone | 2017
Hadi Seyed Hosseini; Ghislain Bernard Maquer; Philippe Zysset
The trabecular structure can be assessed at the wrist or tibia via high-resolution peripheral quantitative computed tomography (HR-pQCT). Yet on this modality, the performance of the existing methods, evaluating trabecular anisotropy is usually overlooked, especially in terms of reproducibility. We thus proposed to compare the TRI routine used by SCANCO Medical AG (Brüttisellen, Switzerland), the classical mean intercept length (MIL), and the grey-level structure tensor (GST) to the mean surface length (MSL), a new method for evaluating a second-order fabric tensor based on the triangulation of the bone surface. The distal radius of 24 fresh-frozen human forearms was scanned three times via HR-pQCT protocols (61μm, 82μm nominal voxel size), dissected, and imaged via micro computed tomography (μCT) at 16μm nominal voxel size. After registering the scans, we compared for each resolution the fabric tensors, determined by the mentioned techniques for 182 trabecular regions of interest. We then evaluated the reproducibility of the fabric information measured by HR-pQCT via precision errors. On μCT, TRI and GST were respectively the best and worst surrogates for MILμCT (MIL computed on μCT) in terms of eigenvalues and main direction of anisotropy. On HR-pQCT, however, MSL provided the best approximation of MILμCT. Surprisingly, surface-based approaches (TRI, MSL) also proved to be more precise than both MIL and GST. Our findings confirm that MSL can reproducibly estimate MILμCT, the current gold standard. MSL thus enables the direct mapping of the fabric-dependent material properties required in homogenised HR-pQCT-based finite element models.
Journal of The Mechanical Behavior of Biomedical Materials | 2018
Marc Stadelmann; Ghislain Bernard Maquer; Benjamin Voumard; Aaron K. Grant; David B. Hackney; Peter Vermathen; Ron N. Alkalay; Philippe Zysset
Intervertebral disc degeneration is a common disease that is often related to impaired mechanical function, herniations and chronic back pain. The degenerative process induces alterations of the discs shape, composition and structure that can be visualized in vivo using magnetic resonance imaging (MRI). Numerical tools such as finite element analysis (FEA) have the potential to relate MRI-based information to the altered mechanical behavior of the disc. However, in terms of geometry, composition and fiber architecture, current FE models rely on observations made on healthy discs and might therefore not be well suited to study the degeneration process. To address the issue, we propose a new, more realistic FE methodology based on diffusion tensor imaging (DTI). For this study, a human disc joint was imaged in a high-field MR scanner with proton-density weighted (PD) and DTI sequences. The PD image was segmented and an anatomy-specific mesh was generated. Assuming accordance between local principal diffusion direction and local mean collagen fiber alignment, corresponding fiber angles were assigned to each element. Those element-wise fiber directions and PD intensities allowed the homogenized model to smoothly account for composition and fibrous structure of the disc. The discs in vitro mechanical behavior was quantified under tension, compression, flexion, extension, lateral bending and rotation. The six resulting load-displacement curves could be replicated by the FE model, which supports our approach as a first proof of concept towards patient-specific disc modeling.