Johann Jakob Schwiedrzik
University of Bern
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Johann Jakob Schwiedrzik.
Nature Materials | 2014
Johann Jakob Schwiedrzik; Rejin Raghavan; Alexander Bürki; Victor Lenader; Johann Michler; Philippe Zysset
Ageing societies suffer from an increasing incidence of bone fractures. Bone strength depends on the amount of mineral measured by clinical densitometry, but also on the micromechanical properties of the hierarchical organization of bone. Here, we investigate the mechanical response under monotonic and cyclic compression of both single osteonal lamellae and macroscopic samples containing numerous osteons. Micropillar compression tests in a scanning electron microscope, microindentation and macroscopic compression tests were performed on dry ovine bone to identify the elastic modulus, yield stress, plastic deformation, damage accumulation and failure mechanisms. We found that isolated lamellae exhibit a plastic behaviour, with higher yield stress and ductility but no damage. In agreement with a proposed rheological model, these experiments illustrate a transition from a ductile mechanical behaviour of bone at the microscale to a quasi-brittle response driven by the growth of cracks along interfaces or in the vicinity of pores at the macroscale.
Biomechanics and Modeling in Mechanobiology | 2013
Johann Jakob Schwiedrzik; Philippe Zysset
Nonlinear computational analysis of materials showing elasto-plasticity or damage relies on knowledge of their yield behavior and strengths under complex stress states. In this work, a generalized anisotropic quadric yield criterion is proposed that is homogeneous of degree one and takes a convex quadric shape with a smooth transition from ellipsoidal to cylindrical or conical surfaces. If in the case of material identification, the shape of the yield function is not known a priori, a minimization using the quadric criterion will result in the optimal shape among the convex quadrics. The convexity limits of the criterion and the transition points between the different shapes are identified. Several special cases of the criterion for distinct material symmetries such as isotropy, cubic symmetry, fabric-based orthotropy and general orthotropy are presented and discussed. The generality of the formulation is demonstrated by showing its degeneration to several classical yield surfaces like the von Mises, Drucker–Prager, Tsai–Wu, Liu, generalized Hill and classical Hill criteria under appropriate conditions. Applicability of the formulation for micromechanical analyses was shown by transformation of a criterion for porous cohesive-frictional materials by Maghous et al. In order to demonstrate the advantages of the generalized formulation, bone is chosen as an example material, since it features yield envelopes with different shapes depending on the considered length scale. A fabric- and density-based quadric criterion for the description of homogenized material behavior of trabecular bone is identified from uniaxial, multiaxial and torsional experimental data. Also, a fabric- and density-based Tsai–Wu yield criterion for homogenized trabecular bone from in silico data is converted to an equivalent quadric criterion by introduction of a transformation of the interaction parameters. Finally, a quadric yield criterion for lamellar bone at the microscale is identified from a nanoindentation study reported in the literature, thus demonstrating the applicability of the generalized formulation to the description of the yield envelope of bone at multiple length scales.
Journal of The Mechanical Behavior of Biomedical Materials | 2014
Dieter H. Pahr; Johann Jakob Schwiedrzik; Enrico Dall'Ara; Philippe K. Zysset
The finite element analysis is an accepted method to predict vertebral body compressive strength. This study compares measurements obtained from in vitro tests with the ones from two different simulation models: clinical quantitative computer tomography (QCT) based homogenized finite element (hFE) models and pre-clinical high-resolution peripheral QCT-based (HR-pQCT) hFE models. About 37 vertebral body sections were prepared by removing end-plates and posterior elements, scanned with QCT (390/450μm voxel size) as well as HR-pQCT (82μm voxel size), and tested in compression up to failure. Non-linear viscous damage hFE models were created from QCT/HT-pQCT images and compared to experimental results based on stiffness and ultimate load. As expected, the predictability of QCT/HR-pQCT-based hFE models for both apparent stiffness (r(2)=0.685/0.801) and strength (r(2)=0.774/0.924) increased if a better image resolution was used. An analysis of the damage distribution showed similar damage locations for all cases. In conclusion, HR-pQCT-based hFE models increased the predictability considerably and do not need any tuning of input parameters. In contrast, QCT-based hFE models usually need some tuning but are clinically the only possible choice at the moment.
Journal of The Mechanical Behavior of Biomedical Materials | 2015
Ghislain Bernard Maquer; Johann Jakob Schwiedrzik; Gerd Huber; Michael M. Morlock; Philippe Zysset
Computer tomography (CT)-based finite element (FE) models assess vertebral strength better than dual energy X-ray absorptiometry. Osteoporotic vertebrae are usually loaded via degenerated intervertebral discs (IVD) and potentially at higher risk under forward bending, but the influences of the IVD and loading conditions are generally overlooked. Accordingly, magnetic resonance imaging was performed on 14 lumbar discs to generate FE models for the healthiest and most degenerated specimens. Compression, torsion, bending, flexion and extension conducted experimentally were used to calibrate both models. They were combined with CT-based FE models of 12 lumbar vertebral bodies to evaluate the effect of disc degeneration compared to a loading via endplates embedded in a stiff resin, the usual experimental paradigm. Compression and lifting were simulated, load and damage pattern were evaluated at failure. Adding flexion to the compression (lifting) and higher disc degeneration reduces the failure load (8-14%, 5-7%) and increases damage in the vertebrae. Under both loading scenarios, decreasing the disc height slightly increases the failure load; embedding and degenerated IVD provides respectively the highest and lowest failure load. Embedded vertebrae are more brittle, but failure loads induced via IVDs correlate highly with vertebral strength. In conclusion, osteoporotic vertebrae with degenerated IVDs are consistently weaker-especially under lifting, but clinical assessment of their strength is possible via FE analysis without extensive disc modelling, by extrapolating measures from the embedded situation.
Computer Methods in Biomechanics and Biomedical Engineering | 2015
Johann Jakob Schwiedrzik; Philippe Zysset
Prevention and treatment of osteoporosis rely on understanding of the micromechanical behaviour of bone and its influence on fracture toughness and cell-mediated adaptation processes. Postyield properties may be assessed by nonlinear finite element simulations of nanoindentation using elastoplastic and damage models. This computational study aims at determining the influence of yield surface shape and damage on the depth-dependent response of bone to nanoindentation using spherical and conical tips. Yield surface shape and damage were shown to have a major impact on the indentation curves. Their influence on indentation modulus, hardness, their ratio as well as the elastic-to-total work ratio is well described by multilinear regressions for both tip shapes. For conical tips, indentation depth was not statistically significant (). For spherical tips, damage was not a significant parameter (). The gained knowledge can be used for developing an inverse method for identification of postelastic properties of bone from nanoindentation.
Computer Methods in Biomechanics and Biomedical Engineering | 2014
Ghislain Bernard Maquer; Johann Jakob Schwiedrzik; Philippe Zysset
Computer tomography (CT)-based finite element (FE) models of vertebral bodies assess fracture load in vitro better than dual energy X-ray absorptiometry, but boundary conditions affect stress distribution under the endplates that may influence ultimate load and damage localisation under post-yield strains. Therefore, HRpQCT-based homogenised FE models of 12 vertebral bodies were subjected to axial compression with two distinct boundary conditions: embedding in polymethylmethalcrylate (PMMA) and bonding to a healthy intervertebral disc (IVD) with distinct hyperelastic properties for nucleus and annulus. Bone volume fraction and fabric assessed from HRpQCT data were used to determine the elastic, plastic and damage behaviour of bone. Ultimate forces obtained with PMMA were 22% higher than with IVD but correlated highly (R2 = 0.99). At ultimate force, distinct fractions of damage were computed in the endplates (PMMA: 6%, IVD: 70%), cortex and trabecular sub-regions, which confirms previous observations that in contrast to PMMA embedding, failure initiated underneath the nuclei in healthy IVDs. In conclusion, axial loading of vertebral bodies via PMMA embedding versus healthy IVD overestimates ultimate load and leads to distinct damage localisation and failure pattern.
Journal of Biomechanics | 2015
Johann Jakob Schwiedrzik; Philippe Zysset
Microindentation in bone is a micromechanical testing technique routinely used to extract material properties related to bone quality. As the analysis of microindentation data is based on assumptions about the contact between sample and surface, the aim of this study was to quantify the topological variability of indentations in bone and examine its relationship with mechanical properties. Indentations were performed in dry human and ovine bone in axial and transverse directions and their topology was measured by atomic force microscopy. Statistical shape modeling of the residual imprint allowed to define a mean shape and to describe the variability in terms of 21 principal components related to imprint depth, surface curvature and roughness. The indentation profile of bone was found to be highly consistent and free of any pile up while differing mostly by depth between species and direction. A few of the topological parameters, in particular depth, showed significant but rather weak and inconsistent correlations to variations in mechanical properties. The mechanical response of bone as well as the residual imprint shape was highly consistent within each category. We could thus verify that bone is rather homogeneous in its micromechanical properties and that indentation results are not strongly influenced by small deviations from an ideally flat surface.
Clinical Biomechanics | 2017
P. Varga; Jason A. Inzana; Johann Jakob Schwiedrzik; Philippe Zysset; Boyko Gueorguiev; Michael Blauth; Markus Windolf
Background High incidence and increased mortality related to secondary, contralateral proximal femoral fractures may justify invasive prophylactic augmentation that reinforces the osteoporotic proximal femur to reduce fracture risk. Bone cement‐based approaches (femoroplasty) may deliver the required strengthening effect; however, the significant variation in the results of previous studies calls for a systematic analysis and optimization of this method. Our hypothesis was that efficient generalized augmentation strategies can be identified via computational optimization. Methods This study investigated, by means of finite element analysis, the effect of cement location and volume on the biomechanical properties of fifteen proximal femora in sideways fall. Novel cement cloud locations were developed using the principles of bone remodeling and compared to the “single central” location that was previously reported to be optimal. Findings The new augmentation strategies provided significantly greater biomechanical benefits compared to the “single central” cement location. Augmenting with approximately 12 ml of cement in the newly identified location achieved increases of 11% in stiffness, 64% in yield force, 156% in yield energy and 59% in maximum force, on average, compared to the non‐augmented state. The weaker bones experienced a greater biomechanical benefit from augmentation than stronger bones. The effect of cement volume on the biomechanical properties was approximately linear. Results of the “single central” model showed good agreement with previous experimental studies. Interpretation These findings indicate enhanced potential of cement‐based prophylactic augmentation using the newly developed cementing strategy. Future studies should determine the required level of strengthening and confirm these numerical results experimentally.
Biomechanics and Modeling in Mechanobiology | 2013
Johann Jakob Schwiedrzik; Philippe Zysset
Archive | 2017
Johann Jakob Schwiedrzik; Johann Michler; Juri Wehrs; Michael Deckarm; Rainer Birringer
Collaboration
Dive into the Johann Jakob Schwiedrzik's collaboration.
Swiss Federal Laboratories for Materials Science and Technology
View shared research outputsSwiss Federal Laboratories for Materials Science and Technology
View shared research outputsSwiss Federal Laboratories for Materials Science and Technology
View shared research outputs