Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giacomo Oliveira is active.

Publication


Featured researches published by Giacomo Oliveira.


Blood | 2013

IL-7 and IL-15 instruct the generation of human memory stem T cells from naive precursors

Nicoletta Cieri; Barbara Camisa; Mattia Forcato; Giacomo Oliveira; Elena Provasi; Attilio Bondanza; Claudio Bordignon; Jacopo Peccatori; Fabio Ciceri; Maria Teresa Lupo-Stanghellini; Fulvio Mavilio; Anna Mondino; Silvio Bicciato; Chiara Bonini

Long-living memory stem T cells (T(SCM)) with the ability to self-renew and the plasticity to differentiate into potent effectors could be valuable weapons in adoptive T-cell therapy against cancer. Nonetheless, procedures to specifically target this T-cell population remain elusive. Here, we show that it is possible to differentiate in vitro, expand, and gene modify in clinically compliant conditions CD8(+) T(SCM) lymphocytes starting from naive precursors. Requirements for the generation of this T-cell subset, described as CD62L(+)CCR7(+)CD45RA(+)CD45R0(+)IL-7Rα(+)CD95(+), are CD3/CD28 engagement and culture with IL-7 and IL-15. Accordingly, T(SCM) accumulates early after hematopoietic stem cell transplantation. The gene expression signature and functional phenotype define this population as a distinct memory T-lymphocyte subset, intermediate between naive and central memory cells. When transplanted in immunodeficient mice, gene-modified naive-derived T(SCM) prove superior to other memory lymphocytes for the ability to expand and differentiate into effectors able to mediate a potent xenogeneic GVHD. Furthermore, gene-modified T(SCM) are the only T-cell subset able to expand and mediate GVHD on serial transplantation, suggesting self-renewal capacity in a clinically relevant setting. These findings provide novel insights into the origin and requirements for T(SCM) generation and pave the way for their clinical rapid exploitation in adoptive cell therapy.


Leukemia | 2015

Sirolimus-based graft-versus-host disease prophylaxis promotes the in vivo expansion of regulatory T cells and permits peripheral blood stem cell transplantation from haploidentical donors

Jacopo Peccatori; Alessandra Forcina; D Clerici; Roberto Crocchiolo; Luca Vago; Maria Teresa Lupo Stanghellini; Maddalena Noviello; Carlo Messina; A. Crotta; Andrea Assanelli; Sarah Marktel; Sven Olek; Sara Mastaglio; Fabio Giglio; L Crucitti; A Lorusso; Elena Guggiari; F Lunghi; M G Carrabba; M. Tassara; Manuela Battaglia; Alessandra Ferraro; M R Carbone; Giacomo Oliveira; Maria Grazia Roncarolo; Silvano Rossini; Massimo Bernardi; Consuelo Corti; Magda Marcatti; Francesca Patriarca

Hematopoietic stem cell transplantation (HSCT) from human leukocyte antigen (HLA) haploidentical family donors is a promising therapeutic option for high-risk hematologic malignancies. Here we explored in 121 patients, mostly with advanced stage diseases, a sirolimus-based, calcineurin-inhibitor-free prophylaxis of graft-versus-host disease (GvHD) to allow the infusion of unmanipulated peripheral blood stem cell (PBSC) grafts from partially HLA-matched family donors (TrRaMM study, Eudract 2007-5477-54). Conditioning regimen was based on treosulfan and fludarabine, and GvHD prophylaxis on antithymocyte globulin Fresenius (ATG-F), rituximab and oral administration of sirolimus and mycophenolate. Neutrophil and platelet engraftment occurred in median at 17 and 19 days after HSCT, respectively, and full donor chimerism was documented in patients’ bone marrow since the first post-transplant evaluation. T-cell immune reconstitution was rapid, and high frequencies of circulating functional T-regulatory cells (Treg) were documented during sirolimus prophylaxis. Incidence of acute GvHD grade II–IV was 35%, and occurrence and severity correlated negatively with Treg frequency. Chronic GvHD incidence was 47%. At 3 years after HSCT, transpant-related mortality was 31%, relapse incidence 48% and overall survival 25%. In conclusion, GvHD prophylaxis with sirolimus–mycophenolate–ATG-F–rituximab promotes a rapid immune reconstitution skewed toward Tregs, allowing the infusion of unmanipulated haploidentical PBSC grafts.


Blood | 2015

Generation of human memory stem T cells after haploidentical T-replete hematopoietic stem cell transplantation.

Nicoletta Cieri; Giacomo Oliveira; Raffaella Greco; Mattia Forcato; Cristian Taccioli; Beatrice Cianciotti; Veronica Valtolina; Maddalena Noviello; Luca Vago; Attilio Bondanza; Francesca Lunghi; Sarah Marktel; Laura Bellio; Claudio Bordignon; Silvio Bicciato; Jacopo Peccatori; Fabio Ciceri; Chiara Bonini

Memory stem T cells (TSCM) have been proposed as key determinants of immunologic memory. However, their exact contribution to a mounting immune response, as well as the mechanisms and timing of their in vivo generation, are poorly understood. We longitudinally tracked TSCM dynamics in patients undergoing haploidentical hematopoietic stem cell transplantation (HSCT), thereby providing novel hints on the contribution of this subset to posttransplant immune reconstitution in humans. We found that donor-derived TSCM are highly enriched early after HSCT. We showed at the antigen-specific and clonal level that TSCM lymphocytes can differentiate directly from naive precursors infused within the graft and that the extent of TSCM generation might correlate with interleukin 7 serum levels. In vivo fate mapping through T-cell receptor sequencing allowed defining the in vivo differentiation landscapes of human naive T cells, supporting the notion that progenies of single naive cells embrace disparate fates in vivo and highlighting TSCM as relevant novel players in the diversification of immunological memory after allogeneic HSCT.


Frontiers in Pharmacology | 2015

Improving the safety of cell therapy with the TK-suicide gene.

Raffaella Greco; Giacomo Oliveira; Maria Teresa Lupo Stanghellini; Luca Vago; Attilio Bondanza; Jacopo Peccatori; Nicoletta Cieri; Sarah Marktel; Sara Mastaglio; Claudio Bordignon; Chiara Bonini; Fabio Ciceri

While opening new frontiers for the cure of malignant and non-malignant diseases, the increasing use of cell therapy poses also several new challenges related to the safety of a living drug. The most effective and consolidated cell therapy approach is allogeneic hematopoietic stem cell transplantation (HSCT), the only cure for several patients with high-risk hematological malignancies. The potential of allogeneic HSCT is strictly dependent on the donor immune system, particularly on alloreactive T lymphocytes, that promote the beneficial graft-versus-tumor effect (GvT), but may also trigger the detrimental graft-versus-host-disease (GvHD). Gene transfer technologies allow to manipulate donor T-cells to enforce GvT and foster immune reconstitution, while avoiding or controlling GvHD. The suicide gene approach is based on the transfer of a suicide gene into donor lymphocytes, for a safe infusion of a wide T-cell repertoire, that might be selectively controlled in vivo in case of GvHD. The herpes simplex virus thymidine kinase (HSV-TK) is the suicide gene most extensively tested in humans. Expression of HSV-TK in donor lymphocytes confers lethal sensitivity to the anti-herpes drug, ganciclovir. Progressive improvements in suicide genes, vector technology and transduction protocols have allowed to overcome the toxicity of GvHD while preserving the antitumor efficacy of allogeneic HSCT. Several phase I-II clinical trials in the last 20 years document the safety and the efficacy of HSV-TK approach, able to maintain its clear value over the last decades, in the rapidly progressing horizon of cancer cellular therapy.


Immunological Reviews | 2014

Adoptive immunotherapy with genetically modified lymphocytes in allogeneic stem cell transplantation

Nicoletta Cieri; Sara Mastaglio; Giacomo Oliveira; Monica Casucci; Attilio Bondanza; Chiara Bonini

Hematopoietic stem cell transplantation from a healthy donor (allo‐HSCT) represents the most potent form of cellular adoptive immunotherapy to treat malignancies. In allo‐HSCT, donor T cells are double edge‐swords: highly potent against residual tumor cells, but potentially highly toxic, and responsible for graft versus host disease (GVHD), a major clinical complication of transplantation. Gene transfer technologies coupled with current knowledge on cancer immunology have generated a wide range of approaches aimed at fostering the immunological response to cancer cells, while avoiding or controlling GVHD. In this review, we discuss cell and gene therapy approaches currently tested in preclinical models and in clinical trials.


Blood | 2012

T-cell suicide gene therapy prompts thymic renewal in adults after hematopoietic stem cell transplantation

Luca Vago; Giacomo Oliveira; Attilio Bondanza; Maddalena Noviello; Corrado Soldati; Domenico Ghio; Immacolata Brigida; Raffaella Greco; Maria Teresa Lupo Stanghellini; Jacopo Peccatori; Sergio Fracchia; Matteo Del Fiacco; Catia Traversari; Alessandro Aiuti; Alessandro Del Maschio; Claudio Bordignon; Fabio Ciceri; Chiara Bonini

The genetic modification of T cells with a suicide gene grants a mechanism of control of adverse reactions, allowing safe infusion after partially incompatible hematopoietic stem cell transplantation (HSCT). In the TK007 clinical trial, 22 adults with hematologic malignancies experienced a rapid and sustained immune recovery after T cell-depleted HSCT and serial infusions of purified donor T cells expressing the HSV thymidine kinase suicide gene (TK+ cells). After a first wave of circulating TK+ cells, the majority of T cells supporting long-term immune reconstitution did not carry the suicide gene and displayed high numbers of naive lymphocytes, suggesting the thymus-dependent development of T cells, occurring only upon TK+ -cell engraftment. Accordingly, after the infusions, we documented an increase in circulating TCR excision circles and CD31+ recent thymic emigrants and a substantial expansion of the active thymic tissue as shown by chest tomography scans. Interestingly, a peak in the serum level of IL-7 was observed after each infusion of TK+ cells, anticipating the appearance of newly generated T cells. The results of the present study show that the infusion of genetically modified donor T cells after HSCT can drive the recovery of thymic activity in adults, leading to immune reconstitution.


Science Translational Medicine | 2015

Tracking genetically engineered lymphocytes long-term reveals the dynamics of T cell immunological memory

Giacomo Oliveira; Eliana Ruggiero; Maria Teresa Lupo Stanghellini; Nicoletta Cieri; Mattia D'Agostino; Raffaele Fronza; Christina Lulay; Francesca Dionisio; Sara Mastaglio; Raffaella Greco; Jacopo Peccatori; Alessandro Aiuti; Alessandro Ambrosi; Luca Biasco; Attilio Bondanza; A. Lambiase; Catia Traversari; Luca Vago; Christof von Kalle; Manfred Schmidt; Claudio Bordignon; Fabio Ciceri; Chiara Bonini

Antigen exposure and differentiation phenotype influence long-term persistence of memory T cells after hematopoietic stem cell transplant. Committing T cells to memory Adoptive cell transfer is an increasingly successful therapy for a variety of diseases; however, little is known about what regulates the survival of these cells in humans. Now, Oliveira et al. leverage patients who have received genetically modified hematopoietic stem cells to track T cells over time. They found labeled effector memory, central memory, and stem memory T cells 2 to 14 years after infusion in all patients. Antigen recognition was critical in driving persistence and expansion. The clones that survived long-term appeared to initiate preferentially from central and stem cell memory T cell populations. These data suggest that the original phenotype of infused cells may influence long-term persistence of adoptively transferred cells. Long-lasting immune protection from pathogens and cancer requires the generation of memory T cells able to survive long-term. To unravel the immunological requirements for long-term persistence of human memory T cells, we characterized and traced, over several years, T lymphocytes genetically modified to express the thymidine kinase (TK) suicide gene that were infused in 10 patients after haploidentical hematopoietic stem cell transplantation (HSCT). At 2 to 14 years after infusion and in the presence of a broad and resting immune system, we could still detect effectors/effector memory (TEM/EFF), central memory (TCM), and stem memory (TSCM) TK+ cells, circulating at low but stable levels in all patients. Longitudinal analysis of cytomegalovirus (CMV)– and Flu-specific TK+ cells indicated that antigen recognition was dominant in driving in vivo expansion and persistence at detectable levels. The amount of infused TSCM cells positively correlated with early expansion and with the absolute counts of long-term persisting gene-marked cells. By combining T cell sorting with sequencing of integration (IS), TCRα and TCRβ clonal markers, we showed that T cells retrieved long-term were enriched in clones originally shared in different memory T cell subsets, whereas dominant long-term clonotypes appeared to preferentially originate from infused TSCM and TCM clones. Together, these results indicate that long-term persistence of gene-modified memory T cells after haploidentical HSCT is influenced by antigen exposure and by the original phenotype of infused cells. Cancer adoptive immunotherapy might thus benefit from cellular products enriched in lymphocytes with an early-differentiated phenotype.


Current Opinion in Hematology | 2012

Use of TK-cells in haploidentical hematopoietic stem cell transplantation.

Giacomo Oliveira; Raffaella Greco; Maria Teresa Lupo-Stanghellini; Luca Vago; Chiara Bonini

Purpose of reviewPreserving the beneficial effects of donor T cells against tumor and pathogens while avoiding noxious graft-versus-host disease (GvHD) is the ‘holy grail’ of allogeneic hematopoietic stem cell transplantation (HSCT). The suicide gene strategy allows the selective elimination of genetically modified donor T cells during GvHD. This review summarizes the results obtained in recent years in the clinical trials of suicide gene therapy using the paradigmatic herpes simplex virus thymidine kinase (TK) suicide gene. Recent findingsT cells genetically modified to express the TK suicide gene, TK-cells, are safe and preserve most of their functional features; when infused into patients they are capable of conferring substantial protection against infections and tumor recurrence, and are promptly eliminated in the case of GvHD, with complete resolution of the adverse reaction in all treated cases. Unexpectedly, TK-cells also have the indirect effect of promoting patient thymopoiesis, contributing to the renewal of a host-tolerant immune repertoire. SummarySuicide gene therapy with TK-cells is a promising approach to overcome the risk of GvHD in allogeneic HSCT, especially from partially incompatible donors, and is currently under evaluation in a multicentric phase III clinical trial.


Journal of Hematology & Oncology | 2016

Integrating a prospective pilot trial and patient-derived xenografts to trace metabolic changes associated with acute myeloid leukemia

Matteo Carrabba; Laurette Tavel; Giacomo Oliveira; Alessandra Forcina; Giacomo Quilici; Francesca Nardelli; Cristina Tresoldi; Alessandro Ambrosi; Fabio Ciceri; Massimo Bernardi; Luca Vago; Giovanna Musco

Despite the considerable progress in understanding the molecular bases of acute myeloid leukemia (AML), new tools to link disease biology to the unpredictable patient clinical course are still needed. Herein, high-throughput metabolomics, combined with the other “-omics” disciplines, holds promise in identifying disease-specific and clinically relevant features.In this study, we took advantage of nuclear magnetic resonance (NMR) to trace AML-associated metabolic trajectory employing two complementary strategies. On the one hand, we performed a prospective observational clinical trial to identify metabolic changes associated with blast clearance during the first two cycles of intensive chemotherapy in nine adult patients. On the other hand, to reduce the intrinsic variability associated with human samples and AML genetic heterogeneity, we analyzed the metabolic changes in the plasma of immunocompromised mice upon engraftment of primary human AML blasts.Combining the two longitudinal approaches, we narrowed our screen to seven common metabolites, for which we observed a mirror-like trajectory in mice and humans, tracing AML progression and remission, respectively. We interpreted this set of metabolites as a dynamic fingerprint of AML evolution.Overall, these NMR-based metabolomic data, to be consolidated in larger cohorts and integrated in more comprehensive system biology approaches, hold promise for providing valuable and non-redundant information on the systemic effects of leukemia.


Bone Marrow Transplantation | 2015

Haploidentical HSCT: a 15-year experience at San Raffaele.

Chiara Bonini; Jacopo Peccatori; Maria Teresa Lupo Stanghellini; Luca Vago; Attilio Bondanza; N Cieri; Raffaella Greco; Massimo Bernardi; Consuelo Corti; Giacomo Oliveira; E Zappone; Catia Traversari; Claudio Bordignon; Fabio Ciceri

Hematopoietic SCT (HSCT) from HLA haploidentical family donors is a promising therapy for high-risk hematological malignancies. In the past 15 years at San Raffaele Scientific Institute, we investigated several transplant platforms and post transplant cellular-based interventions. We showed that T cell-depleted haploidentical transplantation followed by the infusion of genetically modified donor T cells (TK007 study, Eudract-2005-003587-34) promotes fast and wide immune reconstitution and GvHD control. This approach is currently tested in a phase III multicenter randomized trial (TK008 study, NCT00914628). We targeted patients with advanced leukemia with a sirolimus-based, calcineurin inhibitor-free prophylaxis of GvHD to allow the safe infusion of unmanipulated PBSCs from haploidentical family donors (TrRaMM study, Eudract 2007-5477-54). Results of these approaches are summarized and discussed.

Collaboration


Dive into the Giacomo Oliveira's collaboration.

Top Co-Authors

Avatar

Chiara Bonini

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Fabio Ciceri

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jacopo Peccatori

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Attilio Bondanza

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Raffaella Greco

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maria Teresa Lupo Stanghellini

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Maddalena Noviello

Vita-Salute San Raffaele University

View shared research outputs
Researchain Logo
Decentralizing Knowledge