Gianfranco Badaracco
University of Milan
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gianfranco Badaracco.
Molecular Cell | 2000
Saverio Minucci; Marco Maccarana; Mario Cioce; Pasquale De Luca; Vania Gelmetti; Simona Segalla; Luciano Di Croce; Sabrina Giavara; Cristian Matteucci; Alberto Gobbi; Andrea Bianchini; Emanuela Colombo; Ilaria Schiavoni; Gianfranco Badaracco; Xiao Hu; Mitchell A. Lazar; Nicoletta Landsberger; Clara Nervi; Pier Giuseppe Pelicci
RAR and AML1 transcription factors are found in leukemias as fusion proteins with PML and ETO, respectively. Association of PML-RAR and AML1-ETO with the nuclear corepressor (N-CoR)/histone deacetylase (HDAC) complex is required to block hematopoietic differentiation. We show that PML-RAR and AML1-ETO exist in vivo within high molecular weight (HMW) nuclear complexes, reflecting their oligomeric state. Oligomerization requires PML or ETO coiled-coil regions and is responsible for abnormal recruitment of N-CoR, transcriptional repression, and impaired differentiation of primary hematopoietic precursors. Fusion of RAR to a heterologous oligomerization domain recapitulated the properties of PML-RAR, indicating that oligomerization per se is sufficient to achieve transforming potential. These results show that oligomerization of a transcription factor, imposing an altered interaction with transcriptional coregulators, represents a novel mechanism of oncogenic activation.
Molecular and Cellular Biology | 2002
Michela Curradi; Annalisa Izzo; Gianfranco Badaracco; Nicoletta Landsberger
ABSTRACT DNA methylation and chromatin modification operate along a common pathway to repress transcription; accordingly, several experiments demonstrate that the effects of DNA methylation can spread in cis and do not require promoter modification. In order to investigate the molecular details of the inhibitory effect of methylation, we microinjected into Xenopus oocytes a series of constructs containing a human CpG-rich sequence which has been differentially methylated and cloned at different positions relative to a specific promoter. The parameters influencing the diffusion of gene silencing and the importance of histone deacetylation in the spreading effect were analyzed. We demonstrate that a few methylated cytosines can inhibit a flanking promoter but a threshold of modified sites is required to organize a stable, diffusible chromatin structure. Histone deacetylation is the main cause of gene repression only when methylation does not reach levels sufficient to establish this particular structure. Moreover, contrary to the common thought, promoter modification does not lead to the greater repressive effect; the existence of a competition between transactivators and methyl-binding proteins for the establishment of an open conformation justifies the results obtained.
Journal of Biological Chemistry | 2006
Ilaria Bertani; Laura Rusconi; Fabrizio Bolognese; Greta Forlani; Barbara Conca; Lucia De Monte; Gianfranco Badaracco; Nicoletta Landsberger; Charlotte Kilstrup-Nielsen
Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene have been identified in patients with Rett syndrome, West syndrome, and X-linked infantile spasms sharing the common features of generally intractable early seizures and mental retardation. Disease-causing mutations are distributed in both the catalytic domain and in the large COOH terminus. In this report, we examine the functional consequences of some Rett mutations of CDKL5 together with some synthetically designed derivatives useful to underline the functional domains of the protein. The mutated CDKL5 derivatives have been subjected to in vitro kinase assays and analyzed for phosphorylation of the TEY (Thr-Glu-Tyr) motif within the activation loop, their subcellular localization, and the capacity of CDKL5 to interact with itself. Whereas wild-type CDKL5 autophosphorylates and mediates the phosphorylation of the methyl-CpG-binding protein 2 (MeCP2) in vitro, Rett-mutated proteins show both impaired and increased catalytic activity suggesting that a tight regulation of CDKL5 is required for correct brain functions. Furthermore, we show that CDKL5 can self-associate and mediate the phosphorylation of its own TEY (Thr-Glu-Tyr) motif. Eventually, we show that the COOH terminus regulates CDKL5 properties; in particular, it negatively influences the catalytic activity and is required for its proper sub-nuclear localization. We propose a model in which CDKL5 phosphorylation is required for its entrance into the nucleus whereas a portion of the COOH-terminal domain is responsible for a stable residency in this cellular compartment probably through protein-protein interactions.
Experimental Cell Research | 2009
Alessia Guarda; Fabrizio Bolognese; Ian Marc Bonapace; Gianfranco Badaracco
The nuclear membrane has an important role for the dynamic regulation of the genome, besides the well-established cytoskeletal function. The nuclear lamina is emerging as an important player in the organization of the position and functional state of interphase chromosomes. Epigenetic modifications such as DNA methylation and histone modifications are required for genome reprogramming during development, tissue-specific gene expression and global gene silencing. The Methyl-CpG binding protein MeCP2 binds methyl-CpG dinucleotides in the mammalian genome and functions as a transcriptional repressor in vivo by interacting with Sin3A, thereby recruiting histone deacetylases (HDAC). MeCP2 also mediates the formation of higher-order chromatin structures contributing to determine the architectural organization of the nucleus. In this paper, we show that MeCP2 interacts in vitro and in vivo with the inner nuclear membrane protein LBR and that the unstructured aminoacidic sequence linking the MBD and TRD domains of MeCP2 is responsible for this association. The formation of an LBR-MeCP2 protein complex might help providing a molecular explanation to the distribution of part of the heterochromatin at the nuclear periphery linked to inner membrane.
Chromosoma | 1987
Gianfranco Badaracco; L. Baratelli; Enrico Ginelli; R. Meneveri; Paolo Plevani; P. Valsasnini; Claudio Barigozzi
The genus Artemia (Crustacea, Phyllopoda) is widely distributed all over the world as a result partly of natural colonization and partly of spread by birds and man. Artemia offers a very interesting model for speciation studies, since the genus comprises both bisexual sibling species and parthenogenetic populations, exhibiting different chromosome numbers (diploidy, heteroploidy and polyploidy). The finding of the clustered repetitive AluI DNA family in the heterochromatin of A. franciscana can provide a useful tool for investigating the relationship between the members of the genus Artemia at the molecular level. Sixteen strains of Artemia, comprising sibling species and parthenogenetic populations, were analysed for the presence of AluI repetitive DNA by dot-blot hybridization. The observed variation in the content of repetitive DNA together with genetical, biological and geological data, support the hypothesis that Artemia living in the New World are derived from ancestral species that evolved in the Mediterranean area.
Journal of Molecular Evolution | 1995
Gianfranco Badaracco; Marianna Bellorini; Nicoletta Landsberger
Study of polymorphisms in the eukaryotic genome is an important way to discover the evolutionary relationships between species. Artemia (Crustacea, Anostraca) offers a very interesting model for evolutionary studies. In fact the genus, distributed all over the world in hundreds of known biotopes, comprises both bisexual sibling species and parthenogenetic populations easily available from the Artemia Reference Center of Ghent. In spite of great interest in it and its extensive use in aquaculture, little is known about relationships between the different species and intraspecific populations. Recently it has been demonstrated that polymorphisms in genomic fingerprints generated by arbitrarily primed polymerase chain reaction (PCR) can distinguish between strains in many organisms. We have used this technique to estimate the phylogenetic relationships existing between 14 populations living in the American continent, in the Mediterranean area, and in China. The principal coordinate analysis (PCO) obtained from 86 random amplified polymorphic DNA (RAPD) markers indicates that the populations analyzed can be divided into homogeneous clusters representing the four known bisexual species—the American A. franciscana and A. persimilis, the Mediterranean A. salina, and the A. species from China.
The EMBO Journal | 1987
Giovanna Lucchini; Francesconi S; Marco Foiani; Gianfranco Badaracco; Paolo Plevani
The immunopurified yeast DNA polymerase‐‐DNA primase complex is constituted by DNA polymerase I polypeptides and by three other protein species, called p74, p58 and p48, which we show to be immunologically unrelated. The gene encoding the p48 polypeptide has been identified by immunological screening of a lambda gt11 yeast genomic DNA library. Antiserum specific for p48 inhibits DNA primase, and immunoreactive, inhibitory antibodies are affinity‐purified by the clone‐encoded protein, thus relating the p48 polypeptide to DNA primase activity. The entire gene has been cloned, and the 1.45‐kb p48 mRNA is overproduced in cells containing the gene in high copy number. Gene disruption and Southern hybridization experiments demonstrate that the p48 protein is encoded by a single gene and it performs an essential function.
Journal of Molecular Evolution | 1991
Gianfranco Badaracco; Grazia Tubiello; Roberta Benfante; Franco Cotelli; Domenico Maiorano; Nicoletta Landsberger
SummaryThe study of the structural organization of the eukaryotic genome is one of the most important tools for disclosing the evolutionary relationships between species.Artemia (Crustacea, Phyllopoda) offers a very interesting model for speciation studies. The genus, distributed all over the world, comprises both bisexual sibling species and parthenogenetic populations, exhibiting different chromosome numbers (diploidy, polyploidy, and heteroploidy).Digestion of genomic DNA of the parthenogeneticArtemia sp. from Tsing-Tao (China) with the restriction enzymes Eco RI and Alu I reveals that a highly repetitive sequence of 133 bp is present. The Eco RI fragment has been cloned and characterized by genomic organization. The distribution of the Eco RI family of repeats was also studied in several bisexual and parthenogeneticArtemia populations and compared with an Alu I repetitive fragment previously identified inArtemia franciscana.
BMC Cell Biology | 2012
Federica Babbio; Ilaria Castiglioni; Chiara Cassina; Marzia B. Gariboldi; Christian Pistore; Elena Magnani; Gianfranco Badaracco; Elena Monti; Ian Marc Bonapace
BackgroundMeCP2 (CpG-binding protein 2) is a nuclear multifunctional protein involved in several cellular processes, like large-scale chromatin reorganization and architecture, and transcriptional regulation. In recent years, a non-neuronal role for MeCP2 has emerged in cell growth and proliferation. Mutations in the MeCP2 gene have been reported to determine growth disadvantages in cultured lymphocyte cells, and its functional ablation suppresses cell growth in glial cells and proliferation in mesenchymal stem cells and prostate cancer cells. MeCP2 interacts with lamin B receptor (LBR) and with Heterochromatin Protein 1 (HP1) at the nuclear envelope (NE), suggesting that it could be part of complexes involved in attracting heterochromatin at the nuclear periphery and in mediating gene silencing. The nuclear lamins, major components of the lamina, have a role in maintaining NE integrity, in orchestrating mitosis, in DNA replication and transcription, in regulation of mitosis and apoptosis and in providing anchoring sites for chromatin domains.In this work, we inferred that MeCP2 might have a role in nuclear envelope stability, thereby affecting the proliferation pattern of highly proliferating systems.ResultsBy performing knock-down (KD) of MeCP2 in normal murine (NIH-3 T3) and in human prostate transformed cells (PC-3 and LNCaP), we observed a strong proliferation decrease and a defect in the cell cycle progression, with accumulation of cells in S/G2M, without triggering a strong apoptotic and senescent phenotype. In these cells, KD of MeCP2 evidenced a considerable decrease of the levels of lamin A, lamin C, lamin B1 and LBR proteins. Moreover, by confocal analysis we confirmed the reduction of lamin A levels, but we also observed an alteration in the shape of the nuclear lamina and an irregular nuclear rim.ConclusionsOur results that indicate reduced levels of NE components, are consistent with a hypothesis that the deficiency of MeCP2 might cause the lack of a key “bridge” function that links the peripheral heterochromatin to the NE, thereby causing an incorrect assembly of the NE itself, together with a decreased cell proliferation and viability.
Chromosoma | 1984
Claudio Barigozzi; Gianfranco Badaracco; Paolo Plevani; L. Baratelli; S. Profeta; Enrico Ginelli; R. Meneveri
A bisexual species of the genus Artemia (Crustacea, Phyllopoda), Artemia franciscana Barigozzi of San Francisco Bay and a parthenogenetic population of Artemia sp. of Tsing-Tao (China), both with 42 chromosomes, were compared with respect to the microscopic structure of the interphase larval nucleus, the microscopical structure of the prophase chromosomes and the DNA structure. — Artemia franciscana exhibits several chromocenters in the resting nucleus, heterochromatic blocks located at the end of the prophase chromosomes, and a large amount of repetitive DNA (Alu I 110-bp fragments). The other Artemia sp. lacks chromocenters, heterochromatic blocks in the chromosomes, and the Alu I DNA. The two populations thus differ by a remarkable amount of repetitive DNA.