Paolo Plevani
University of Milan
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Paolo Plevani.
Nature | 2001
Massimo Lopes; Cecilia Cotta-Ramusino; Achille Pellicioli; Giordano Liberi; Paolo Plevani; Marco Muzi-Falconi; Carol S. Newlon; Marco Foiani
In response to DNA damage and blocks to replication, eukaryotes activate the checkpoint pathways that prevent genomic instability and cancer by coordinating cell cycle progression with DNA repair. In budding yeast, the checkpoint response requires the Mec1-dependent activation of the Rad53 protein kinase. Active Rad53 slows DNA synthesis when DNA is damaged and prevents firing of late origins of replication. Further, rad53 mutants are unable to recover from a replication block. Mec1 and Rad53 also modulate the phosphorylation state of different DNA replication and repair enzymes. Little is known of the mechanisms by which checkpoint pathways interact with the replication apparatus when DNA is damaged or replication blocked. We used the two-dimensional gel technique to examine replication intermediates in response to hydroxyurea-induced replication blocks. Here we show that hydroxyurea-treated rad53 mutants accumulate unusual DNA structures at replication forks. The persistence of these abnormal molecules during recovery from the hydroxyurea block correlates with the inability to dephosphorylate Rad53. Further, Rad53 is required to properly maintain stable replication forks during the block. We propose that Rad53 prevents collapse of the fork when replication pauses.
The EMBO Journal | 1999
Achille Pellicioli; Chiara Lucca; Giordano Liberi; Federica Marini; Massimo Lopes; Paolo Plevani; Alfredo Romano; Pier Paolo Di Fiore; Marco Foiani
The Saccharomyces cerevisiae Rad53 protein kinase is required for the execution of checkpoint arrest at multiple stages of the cell cycle. We found that Rad53 autophosphorylation activity depends on in trans phosphorylation mediated by Mec1 and does not require physical association with other proteins. Uncoupling in trans phosphorylation from autophosphorylation using a rad53 kinase‐defective mutant results in a dominant‐negative checkpoint defect. Activation of Rad53 in response to DNA damage in G1 requires the Rad9, Mec3, Ddc1, Rad17 and Rad24 checkpoint factors, while this dependence is greatly reduced in S phase cells. Furthermore, during recovery from checkpoint activation, Rad53 activity decreases through a process that does not require protein synthesis. We also found that Rad53 modulates the lagging strand replication apparatus by controlling phosphorylation of the DNA polymerase α‐primase complex in response to intra‐S DNA damage.
Molecular and Cellular Biology | 1994
Marco Foiani; Federica Marini; Daniela Gamba; Giovanna Lucchini; Paolo Plevani
The four-subunit DNA polymerase alpha-primase complex is unique in its ability to synthesize DNA chains de novo, and some in vitro data suggest its involvement in initiation and elongation of chromosomal DNA replication, although direct in vivo evidence for a role in the initiation reaction is still lacking. The function of the B subunit of the complex is unknown, but the Saccharomyces cerevisiae POL12 gene, which encodes this protein, is essential for cell viability. We have produced different pol12 alleles by in vitro mutagenesis of the cloned gene. The in vivo analysis of our 18 pol12 alleles indicates that the conserved carboxy-terminal two-thirds of the protein contains regions that are essential for cell viability, while the more divergent NH2-terminal portion is partially dispensable. The characterization of the temperature-sensitive pol12-T9 mutant allele demonstrates that the B subunit is required for in vivo DNA synthesis and correct progression through S phase. Moreover, reciprocal shift experiments indicate that the POL12 gene product plays an essential role at the early stage of chromosomal DNA replication, before the hydroxyurea-sensitive step. A model for the role of the B subunit in initiation of DNA replication at an origin is presented.
Journal of Biological Chemistry | 2005
Michele Giannattasio; Federico Lazzaro; Paolo Plevani; Marco Muzi-Falconi
The cellular response to DNA lesions entails the recruitment of several checkpoint and repair factors to damaged DNA, and chromatin modifications may play a role in this process. Here we show that in Saccharomyces cerevisiae epigenetic modification of histones is required for checkpoint activity in response to a variety of genotoxic stresses. We demonstrate that ubiquitination of histone H2B on lysine 123 by the Rad6-Bre1 complex, is necessary for activation of Rad53 kinase and cell cycle arrest. We found a similar requirement for Dot1-dependent methylation of histone H3. Loss of H3-Lys79 methylation does not affect Mec1 activation, whereas it renders cells checkpoint-defective by preventing phosphorylation of Rad9. Such results suggest that histone modifications may have a role in checkpoint function by modulating the interactions of Rad9 with chromatin and active Mec1 kinase.
Nature Genetics | 2010
Daniela Di Bella; Federico Lazzaro; Massimo Plumari; Giorgio Battaglia; Annalisa Pastore; Adele Finardi; Claudia Cagnoli; Filippo Tempia; Marina Frontali; Liana Veneziano; Tiziana Sacco; Enrica Boda; Alessandro Brussino; Florian Bonn; Barbara Castellotti; Silvia Baratta; Caterina Mariotti; Cinzia Gellera; Valentina Fracasso; Stefania Magri; Thomas Langer; Paolo Plevani; Stefano Di Donato; Marco Muzi-Falconi; Franco Taroni
Autosomal dominant spinocerebellar ataxias (SCAs) are genetically heterogeneous neurological disorders characterized by cerebellar dysfunction mostly due to Purkinje cell degeneration. Here we show that AFG3L2 mutations cause SCA type 28. Along with paraplegin, which causes recessive spastic paraplegia, AFG3L2 is a component of the conserved m-AAA metalloprotease complex involved in the maintenance of the mitochondrial proteome. We identified heterozygous missense mutations in five unrelated SCA families and found that AFG3L2 is highly and selectively expressed in human cerebellar Purkinje cells. m-AAA–deficient yeast cells expressing human mutated AFG3L2 homocomplex show respiratory deficiency, proteolytic impairment and deficiency of respiratory chain complex IV. Structure homology modeling indicates that the mutations may affect AFG3L2 substrate handling. This work identifies AFG3L2 as a novel cause of dominant neurodegenerative disease and indicates a previously unknown role for this component of the mitochondrial protein quality control machinery in protecting the human cerebellum against neurodegeneration.
The EMBO Journal | 1998
Maria Pia Longhese; Marco Foiani; Marco Muzi-Falconi; Giovanna Lucchini; Paolo Plevani
Eukaryotic cells have evolved a network of control mechanisms, known as checkpoints, which coordinate cell‐cycle progression in response to internal and external cues. The yeast Saccharomyces cerevisiae has been invaluable in dissecting genetically the DNA damage checkpoint pathway. Recent results on posttranslational modifications and protein–protein interactions of some key factors provide new insights into the architecture of checkpoint protein complexes and their order of function.
The EMBO Journal | 1997
Maria Pia Longhese; Vera Paciotti; Roberta Fraschini; Raffaella Zaccarini; Paolo Plevani; Giovanna Lucchini
The DDC1 gene was identified, together with MEC3 and other checkpoint genes, during a screening for mutations causing synthetic lethality when combined with a conditional allele altering DNA primase. Deletion of DDC1 causes sensitivity to UV radiation, methyl methanesulfonate (MMS) and hydroxyurea (HU). ddc1Δ mutants are defective in delaying G1–S and G2–M transition and in slowing down the rate of DNA synthesis when DNA is damaged during G1, G2 or S phase, respectively. Therefore, DDC1 is involved in all the known DNA damage checkpoints. Conversely, Ddc1p is not required for delaying entry into mitosis when DNA synthesis is inhibited. ddc1 and mec3 mutants belong to the same epistasis group, and DDC1 overexpression can partially suppress MMS and HU sensitivity of mec3Δ strains, as well as their checkpoint defects. Moreover, Ddc1p is phosphorylated periodically during a normal cell cycle and becomes hyperphosphorylated in response to DNA damage. Both phosphorylation events are at least partially dependent on a functional MEC3 gene.
The EMBO Journal | 2008
Federico Lazzaro; Vasileia Sapountzi; Magda Granata; Achille Pellicioli; Moreshwar B. Vaze; James E. Haber; Paolo Plevani; David Lydall; Marco Muzi-Falconi
Cells respond to DNA double‐strand breaks (DSBs) and uncapped telomeres by recruiting checkpoint and repair factors to the site of lesions. Single‐stranded DNA (ssDNA) is an important intermediate in the repair of DSBs and is produced also at uncapped telomeres. Here, we provide evidence that binding of the checkpoint protein Rad9, through its Tudor domain, to methylated histone H3‐K79 inhibits resection at DSBs and uncapped telomeres. Loss of DOT1 or mutations in RAD9 influence a Rad50‐dependent nuclease, leading to more rapid accumulation of ssDNA, and faster activation of the critical checkpoint kinase, Mec1. Moreover, deletion of RAD9 or DOT1 partially bypasses the requirement for CDK1 in DSB resection. Interestingly, Dot1 contributes to checkpoint activation in response to low levels of telomere uncapping but is not essential with high levels of uncapping. We suggest that both Rad9 and histone H3 methylation allow transmission of the damage signal to checkpoint kinases, and keep resection of damaged DNA under control influencing, both positively and negatively, checkpoint cascades and contributing to a tightly controlled response to DNA damage.
The EMBO Journal | 2000
Giordano Liberi; Irene Chiolo; Achille Pellicioli; Massimo Lopes; Paolo Plevani; Marco Muzi-Falconi; Marco Foiani
In Saccharomyces cerevisiae the rate of DNA replication is slowed down in response to DNA damage as a result of checkpoint activation, which is mediated by the Mec1 and Rad53 protein kinases. We found that the Srs2 DNA helicase, which is involved in DNA repair and recombination, is phosphorylated in response to intra‐S DNA damage in a checkpoint‐dependent manner. DNA damage‐induced Srs2 phosphorylation also requires the activity of the cyclin‐dependent kinase Cdk1, suggesting that the checkpoint pathway might modulate Cdk1 activity in response to DNA damage. Moreover, srs2 mutants fail to activate Rad53 properly and to slow down DNA replication in response to intra‐S DNA damage. The residual Rad53 activity observed in srs2 cells depends upon the checkpoint proteins Rad17 and Rad24. Moreover, DNA damage‐induced lethality in rad17 mutants depends partially upon Srs2, suggesting that a functional Srs2 helicase causes accumulation of lethal events in a checkpoint‐defective context. Altogether, our data implicate Srs2 in the Mec1 and Rad53 pathway and connect the checkpoint response to DNA repair and recombination.
The EMBO Journal | 1998
Vera Paciotti; Giovanna Lucchini; Paolo Plevani; Maria Pia Longhese
Checkpoints prevent DNA replication or nuclear division when chromosomes are damaged. The Saccharomyces cerevisiae DDC1 gene belongs to the RAD17, MEC3 and RAD24 epistasis group which, together with RAD9, is proposed to act at the beginning of the DNA damage checkpoint pathway. Ddc1p is periodically phosphorylated during unperturbed cell cycle and hyperphosphorylated in response to DNA damage. We demonstrate that Ddc1p interacts physically in vivo with Mec3p, and this interaction requires Rad17p. We also show that phosphorylation of Ddc1p depends on the key checkpoint protein Mec1p and also on Rad24p, Rad17p and Mec3p. This suggests that Mec1p might act together with the Rad24 group of proteins at an early step of the DNA damage checkpoint response. On the other hand, Ddc1p phosphorylation is independent of Rad53p and Rad9p. Moreover, while Ddc1p is required for Rad53p phosphorylation, it does not play any major role in the phosphorylation of the anaphase inhibitor Pds1p, which requires RAD9 and MEC1. We suggest that Rad9p and Ddc1p might function in separated branches of the DNA damage checkpoint pathway, playing different roles in determining Mec1p activity and/or substrate specificity.