Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gianluca Baldanzi is active.

Publication


Featured researches published by Gianluca Baldanzi.


Journal of Cell Biology | 2002

Ghrelin and des-acyl ghrelin inhibit cell death in cardiomyocytes and endothelial cells through ERK1/2 and PI 3-kinase/AKT

Gianluca Baldanzi; Nicoletta Filigheddu; Santina Cutrupi; Filomena Catapano; Sara Bonissoni; Alberto Fubini; Daniela Malan; Germano Baj; Riccarda Granata; Fabio Broglio; Mauro Papotti; Nicola Surico; Federico Bussolino; Jörgen Isgaard; Romano Deghenghi; Fabiola Sinigaglia; Maria Prat; Giampiero Muccioli; Ezio Ghigo; Andrea Graziani

Ghrelin is an acyl-peptide gastric hormone acting on the pituitary and hypothalamus to stimulate growth hormone (GH) release, adiposity, and appetite. Ghrelin endocrine activities are entirely dependent on its acylation and are mediated by GH secretagogue (GHS) receptor (GHSR)-1a, a G protein–coupled receptor mostly expressed in the pituitary and hypothalamus, previously identified as the receptor for a group of synthetic molecules featuring GH secretagogue (GHS) activity. Des-acyl ghrelin, which is far more abundant than ghrelin, does not bind GHSR-1a, is devoid of any endocrine activity, and its function is currently unknown. Ghrelin, which is expressed in heart, albeit at a much lower level than in the stomach, also exerts a cardio protective effect through an unknown mechanism, independent of GH release. Here we show that both ghrelin and des-acyl ghrelin inhibit apoptosis of primary adult and H9c2 cardiomyocytes and endothelial cells in vitro through activation of extracellular signal–regulated kinase-1/2 and Akt serine kinases. In addition, ghrelin and des-acyl ghrelin recognize common high affinity binding sites on H9c2 cardiomyocytes, which do not express GHSR-1a. Finally, both MK-0677 and hexarelin, a nonpeptidyl and a peptidyl synthetic GHS, respectively, recognize the common ghrelin and des-acyl ghrelin binding sites, inhibit cell death, and activate MAPK and Akt. These findings provide the first evidence that, independent of its acylation, ghrelin gene product may act as a survival factor directly on the cardiovascular system through binding to a novel, yet to be identified receptor, which is distinct from GHSR-1a.


Nature Cell Biology | 2008

A role for phosphatidic acid in COPI vesicle fission yields insights into Golgi maintenance

Jia Shu Yang; Helge Gad; Stella Y. Lee; Alexander A. Mironov; Leiliang Zhang; Galina V. Beznoussenko; Carmen Valente; Gabriele Turacchio; Akua N. Bonsra; Guangwei Du; Gianluca Baldanzi; Andrea Graziani; Sylvain G. Bourgoin; Michael A. Frohman; Alberto Luini; Victor W. Hsu

Proteins essential for vesicle formation by the Coat Protein I (COPI) complex are being identified, but less is known about the role of specific lipids. Brefeldin-A ADP-ribosylated substrate (BARS) functions in the fission step of COPI vesicle formation. Here, we show that BARS induces membrane curvature in cooperation with phosphatidic acid. This finding has allowed us to further delineate COPI vesicle fission into two sub-stages: 1) an earlier stage of bud-neck constriction, in which BARS and other COPI components are required, and 2) a later stage of bud-neck scission, in which phosphatidic acid generated by phospholipase D2 (PLD2) is also required. Moreover, in contrast to the disruption of the Golgi seen on perturbing the core COPI components (such as coatomer), inhibition of PLD2 causes milder disruptions, suggesting that such COPI components have additional roles in maintaining Golgi structure other than through COPI vesicle formation.


Journal of Clinical Investigation | 2013

Acylated and unacylated ghrelin impair skeletal muscle atrophy in mice

Paolo Porporato; Nicoletta Filigheddu; Simone Reano; Michele Ferrara; Elia Angelino; Viola F. Gnocchi; Flavia Prodam; Giulia Ronchi; Sharmila Fagoonee; Michele Fornaro; Federica Chianale; Gianluca Baldanzi; Nicola Surico; Fabiola Sinigaglia; Isabelle Perroteau; Roy G. Smith; Yuxiang Sun; Stefano Geuna; Andrea Graziani

Cachexia is a wasting syndrome associated with cancer, AIDS, multiple sclerosis, and several other disease states. It is characterized by weight loss, fatigue, loss of appetite, and skeletal muscle atrophy and is associated with poor patient prognosis, making it an important treatment target. Ghrelin is a peptide hormone that stimulates growth hormone (GH) release and positive energy balance through binding to the receptor GHSR-1a. Only acylated ghrelin (AG), but not the unacylated form (UnAG), can bind GHSR-1a; however, UnAG and AG share several GHSR-1a-independent biological activities. Here we investigated whether UnAG and AG could protect against skeletal muscle atrophy in a GHSR-1a-independent manner. We found that both AG and UnAG inhibited dexamethasone-induced skeletal muscle atrophy and atrogene expression through PI3Kβ-, mTORC2-, and p38-mediated pathways in myotubes. Upregulation of circulating UnAG in mice impaired skeletal muscle atrophy induced by either fasting or denervation without stimulating muscle hypertrophy and GHSR-1a-mediated activation of the GH/IGF-1 axis. In Ghsr-deficient mice, both AG and UnAG induced phosphorylation of Akt in skeletal muscle and impaired fasting-induced atrophy. These results demonstrate that AG and UnAG act on a common, unidentified receptor to block skeletal muscle atrophy in a GH-independent manner.


The EMBO Journal | 2000

Src‐mediated activation of α‐diacylglycerol kinase is required for hepatocyte growth factor‐induced cell motility

Santina Cutrupi; Gianluca Baldanzi; Daniela Gramaglia; Antonella Maffè; Dick Schaap; Enrico Giraudo; Wim J. van Blitterswijk; Federico Bussolino; Paolo M. Comoglio; Andrea Graziani

Diacylglycerol kinases are involved in cell signaling, either as regulators of diacylglycerol levels or as intracellular signal‐generating enzymes. However, neither their role in signal transduction nor their biochemical regulation has been elucidated. Hepatocyte growth factor (HGF), upon binding to its tyrosine kinase receptor, activates multiple signaling pathways stimulating cell motility, scattering, proliferation and branching morphogenesis. Herein we demonstrate that: (i) the enzymatic activity of α‐diacylglycerol kinase (αDgk) is stimulated by HGF in epithelial, endothelial and αDgk‐transfected COS cells; (ii) cellular expression of an αDgk kinase‐defective mutant inhibits activation of endogenous αDgk acting as dominant negative; (iii) specific inhibition of αDgk prevents HGF‐induced cell movement of endothelial cells; (iv) HGF induces the association of αDgk in a complex with Src, whose tyrosine kinase activity is required for αDgk activation by HGF; (v) Src wild type stimulates αDgk activity in vitro; and (vi) αDgk can be tyrosine phosphorylated in intact cells.


Oncogene | 2004

Activation of diacylglycerol kinase alpha is required for VEGF-induced angiogenic signaling in vitro.

Gianluca Baldanzi; Stefania Mitola; Santina Cutrupi; Nicoletta Filigheddu; Wim J. van Blitterswijk; Fabiola Sinigaglia; Federico Bussolino; Andrea Graziani

Vascular endothelial growth factor-A (VEGF-A) promotes angiogenesis by stimulating migration, proliferation and organization of endothelium, through the activation of signaling pathways involving Src tyrosine kinase. As we had previously shown that Src-mediated activation of diacylglycerol kinase-α (Dgk-α) is required for hepatocytes growth factor-stimulated cell migration, we asked whether Dgk-α is involved in the transduction of angiogenic signaling. In PAE-KDR cells, an endothelial-derived cell line expressing VEGFR-2, VEGF-A165, stimulates the enzymatic activity of Dgk-α: activation is inhibited by R59949, an isoform-specific Dgk inhibitor, and is dependent on Src tyrosine kinase, with which Dgk-α forms a complex. Conversely in HUVEC, VEGF-A165-induced activation of Dgk is only partially sensitive to R59949, suggesting that also other isoforms may be activated, albeit still dependent on Src tyrosine kinase. Specific inhibition of Dgk-α, obtained in both cells by R59949 and in PAE-KDR by expression of Dgk-α dominant-negative mutant, impairs VEGF-A165-dependent chemotaxis, proliferation and in vitro angiogenesis. In addition, in HUVEC, specific downregulation of Dgk-α by siRNA impairs in vitro angiogenesis on matrigel, further suggesting the requirement for Dgk-α in angiogenic signaling in HUVEC. Thus, we propose that activation of Dgk-α generates a signal essential for both proliferative and migratory response to VEGF-A165, suggesting that it may constitute a novel pharmacological target for angiogenesis control.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Diacylglycerol kinase α mediates HGF-induced Rac activation and membrane ruffling by regulating atypical PKC and RhoGDI

Federica Chianale; Elena Rainero; Cristina Cianflone; Valentina Bettio; Andrea Pighini; Paolo E. Porporato; Nicoletta Filigheddu; Guido Serini; Fabiola Sinigaglia; Gianluca Baldanzi; Andrea Graziani

Diacylglycerol kinases (DGKs) convert diacylglycerol (DAG) into phosphatidic acid (PA), acting as molecular switches between DAG- and PA-mediated signaling. We previously showed that Src-dependent activation and plasma membrane recruitment of DGKα are required for growth-factor-induced cell migration and ruffling, through the control of Rac small-GTPase activation and plasma membrane localization. Herein we unveil a signaling pathway through which DGKα coordinates the localization of Rac. We show that upon hepatocyte growth-factor stimulation, DGKα, by producing PA, provides a key signal to recruit atypical PKCζ/ι (aPKCζ/ι) in complex with RhoGDI and Rac at ruffling sites of colony-growing epithelial cells. Then, DGKα-dependent activation of aPKCζ/ι mediates the release of Rac from the inhibitory complex with RhoGDI, allowing its activation and leading to formation of membrane ruffles, which constitute essential requirements for cell migration. These findings highlight DGKα as the central element of a lipid signaling pathway linking tyrosine kinase growth-factor receptors to regulation of aPKCs and RhoGDI, and providing a positional signal regulating Rac association to the plasma membrane.


Journal of Biological Chemistry | 2008

The Gi-coupled P2Y12 Receptor Regulates Diacylglycerol-mediated Signaling in Human Platelets

Gianni F. Guidetti; Paolo Lova; Bruno Bernardi; Francesca Campus; Gianluca Baldanzi; Andrea Graziani; Cesare Balduini; Mauro Torti

Stimulation of Gq-coupled receptors activates phospholipase C and is supposed to promote both intracellular Ca2+ mobilization and protein kinase C (PKC) activation. We found that ADP-induced phosphorylation of pleckstrin, the main platelet substrate for PKC, was completely inhibited not only by an antagonist of the Gq-coupled P2Y1 receptor but also upon blockade of the Gi-coupled P2Y12 receptor. The role of Gi on PKC regulation required stimulation of phosphatidylinositol 3-kinase rather than inhibition of adenylyl cyclase. P2Y12 antagonists also inhibited pleckstrin phosphorylation, Rap1b activation, and platelet aggregation induced upon Gq stimulation by the thromboxane A2 analogue U46619. Importantly, activation of phospholipase C and intracellular Ca2+ mobilization occurred normally. Phorbol 12-myristate 13-acetate overcame the inhibitory effect of P2Y12 receptor blockade on PKC activation but not on Rap1b activation and platelet aggregation. By contrast, inhibition of diacylglycerol kinase restored both PKC and Rap1b activity and caused platelet aggregation. Stimulation of P2Y12 receptor or direct inhibition of diacylglycerol kinase potentiated the effect of membrane-permeable sn-1,2-dioctanoylglycerol on platelet aggregation and pleckstrin phosphorylation, in association with inhibition of its phosphorylation to phosphatidic acid. These results reveal a novel and unexpected role of the Gi-coupled P2Y12 receptor in the regulation of diacylglycerol-mediated events in activated platelets.


Endocrine | 2001

Hexarelin protects H9c2 cardiomyocytes from doxorubicin-induced cell death

Nicoletta Filigheddu; Alberto Fubini; Gianluca Baldanzi; Santina Cutrupi; Corrado Ghè; Filomena Catapano; Fabio Broglio; Amalia Bosia; Mauro Papotti; Giampiero Muccioli; Ezio Ghigo; Romano Deghenghi; Andrea Graziani

Growth hormone secretagogues (GHSs) are synthetic peptidyl and nonpeptidyl molecules that possess strong growth hormone-releasing activity acting on specific pituitary and hypothalamic receptor subtypes. Differently from nonpeptidyl GHSs, peptidyl molecules such as hexarelin, a hexapeptide, possess specific high-affinity binding sites in animal and human heart and, after prolonged treatment, protect rats in vivo from ischemiainduced myocardial damage. To verify the hypothesis that peptidyl GHSs protect heart cells from cell death, we have investigated the cellular effects of hexarelin on H9c2 cardiomyocytes, a fetal car diomyocyte-derived cell line, and on Hend, an endothelial cell line derived from transformed murine heart endothelium. We show that (i)H9c2 cardiomyocytes show specific binding for 125I-Tyr-Ala-hexarelin, which is inhibited by peptidyl GHSs such as Tyr-Ala-hexarelin and hexarelin but not by the nonpeptidyl GHS MK-0677, (ii) hexarelin promotes survival of H9c2 cardiomyocytes induced to die by doxorubicin, and (iii) that hexarelin inhibits apoptosis, as measured by DNA fragmentation, induced in both H9c2 myocytes and endothelial cells. In conclusion, our findings show that peptidyl GHSs such as hexarelin act as survival factors for cardiomyocytes and endothelium-derived cells in culture. These findings suggest that the inhibitory activity of hexarelin on cardiomyocytes and endothelial cell death could explain, at least partially, its cardioprotective effect against ischemia recorded in rats in vivo.


Oncogene | 2008

Diacylglycerol kinase-alpha phosphorylation by Src on Y335 is required for activation, membrane recruitment and Hgf-induced cell motility.

Gianluca Baldanzi; Santina Cutrupi; Federica Chianale; Viola F. Gnocchi; Elena Rainero; Paolo Porporato; Nicoletta Filigheddu; W J van Blitterswijk; Ornella Parolini; Federico Bussolino; Fabiola Sinigaglia; Andrea Graziani

Diacylglycerol (DAG) kinases (Dgk), which phosphorylate DAG to generate phosphatidic acid, act as either positive or negative key regulators of cell signaling. We previously showed that Src mediates growth factors-induced activation of Dgk-α, whose activity is required for cell motility, proliferation and angiogenesis. Here, we demonstrate that both hepatocytes growth factor (HGF) stimulation and v-Src transformation induce tyrosine phosphorylation of Dgk-α on Y335, through a mechanism requiring its proline-rich C-terminal sequence. Moreover, we show that both proline-rich sequence and phosphorylation of Y335 of Dgk-α mediate: (i) its enzymatic activation, (ii) its ability to interact respectively with SH3 and SH2 domains of Src, (iii) its recruitment to the membrane. In addition, we show that phosphorylation of Dgk-α on Y335 is required for HGF-induced motility, while its constitutive recruitment at the membrane by myristylation is sufficient to trigger spontaneous motility in absence of HGF. Providing the first evidence that tyrosine phosphorylation of Dgk-α is required for growth-factors-induced activation and membrane recruitment, these findings underscore its relevance as a rheostat, whose activation is a threshold to elicit growth factors-induced migratory signaling.


Journal of Immunology | 2011

SAP-Mediated Inhibition of Diacylglycerol Kinase α Regulates TCR-Induced Diacylglycerol Signaling

Gianluca Baldanzi; Andrea Pighini; Valentina Bettio; Elena Rainero; Sara Traini; Federica Chianale; Paolo Porporato; Nicoletta Filigheddu; Riccardo Mesturini; Shu-Ping Song; Tamás Schweighoffer; Laura Patrussi; Cosima T. Baldari; Xiao-Ping Zhong; Wim J. van Blitterswijk; Fabiola Sinigaglia; Kim E. Nichols; Ignacio Rubio; Ornella Parolini; Andrea Graziani

Diacylglycerol kinases (DGKs) metabolize diacylglycerol to phosphatidic acid. In T lymphocytes, DGKα acts as a negative regulator of TCR signaling by decreasing diacylglycerol levels and inducing anergy. In this study, we show that upon costimulation of the TCR with CD28 or signaling lymphocyte activation molecule (SLAM), DGKα, but not DGKζ, exits from the nucleus and undergoes rapid negative regulation of its enzymatic activity. Inhibition of DGKα is dependent on the expression of SAP, an adaptor protein mutated in X-linked lymphoproliferative disease, which is essential for SLAM-mediated signaling and contributes to TCR/CD28-induced signaling and T cell activation. Accordingly, overexpression of SAP is sufficient to inhibit DGKα, whereas SAP mutants unable to bind either phospho-tyrosine residues or SH3 domain are ineffective. Moreover, phospholipase C activity and calcium, but not Src-family tyrosine kinases, are also required for negative regulation of DGKα. Finally, inhibition of DGKα in SAP-deficient cells partially rescues defective TCR/CD28 signaling, including Ras and ERK1/2 activation, protein kinase Cθ membrane recruitment, induction of NF-AT transcriptional activity, and IL-2 production. Thus SAP-mediated inhibition of DGKα sustains diacylglycerol signaling, thereby regulating T cell activation, and it may represent a novel pharmacological strategy for X-linked lymphoproliferative disease treatment.

Collaboration


Dive into the Gianluca Baldanzi's collaboration.

Top Co-Authors

Avatar

Andrea Graziani

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fabiola Sinigaglia

University of Eastern Piedmont

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rita Carini

University of the East

View shared research outputs
Researchain Logo
Decentralizing Knowledge