Paolo Porporato
University of Turin
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Paolo Porporato.
Journal of Clinical Investigation | 2013
Paolo Porporato; Nicoletta Filigheddu; Simone Reano; Michele Ferrara; Elia Angelino; Viola F. Gnocchi; Flavia Prodam; Giulia Ronchi; Sharmila Fagoonee; Michele Fornaro; Federica Chianale; Gianluca Baldanzi; Nicola Surico; Fabiola Sinigaglia; Isabelle Perroteau; Roy G. Smith; Yuxiang Sun; Stefano Geuna; Andrea Graziani
Cachexia is a wasting syndrome associated with cancer, AIDS, multiple sclerosis, and several other disease states. It is characterized by weight loss, fatigue, loss of appetite, and skeletal muscle atrophy and is associated with poor patient prognosis, making it an important treatment target. Ghrelin is a peptide hormone that stimulates growth hormone (GH) release and positive energy balance through binding to the receptor GHSR-1a. Only acylated ghrelin (AG), but not the unacylated form (UnAG), can bind GHSR-1a; however, UnAG and AG share several GHSR-1a-independent biological activities. Here we investigated whether UnAG and AG could protect against skeletal muscle atrophy in a GHSR-1a-independent manner. We found that both AG and UnAG inhibited dexamethasone-induced skeletal muscle atrophy and atrogene expression through PI3Kβ-, mTORC2-, and p38-mediated pathways in myotubes. Upregulation of circulating UnAG in mice impaired skeletal muscle atrophy induced by either fasting or denervation without stimulating muscle hypertrophy and GHSR-1a-mediated activation of the GH/IGF-1 axis. In Ghsr-deficient mice, both AG and UnAG induced phosphorylation of Akt in skeletal muscle and impaired fasting-induced atrophy. These results demonstrate that AG and UnAG act on a common, unidentified receptor to block skeletal muscle atrophy in a GH-independent manner.
Oncogene | 2008
Gianluca Baldanzi; Santina Cutrupi; Federica Chianale; Viola F. Gnocchi; Elena Rainero; Paolo Porporato; Nicoletta Filigheddu; W J van Blitterswijk; Ornella Parolini; Federico Bussolino; Fabiola Sinigaglia; Andrea Graziani
Diacylglycerol (DAG) kinases (Dgk), which phosphorylate DAG to generate phosphatidic acid, act as either positive or negative key regulators of cell signaling. We previously showed that Src mediates growth factors-induced activation of Dgk-α, whose activity is required for cell motility, proliferation and angiogenesis. Here, we demonstrate that both hepatocytes growth factor (HGF) stimulation and v-Src transformation induce tyrosine phosphorylation of Dgk-α on Y335, through a mechanism requiring its proline-rich C-terminal sequence. Moreover, we show that both proline-rich sequence and phosphorylation of Y335 of Dgk-α mediate: (i) its enzymatic activation, (ii) its ability to interact respectively with SH3 and SH2 domains of Src, (iii) its recruitment to the membrane. In addition, we show that phosphorylation of Dgk-α on Y335 is required for HGF-induced motility, while its constitutive recruitment at the membrane by myristylation is sufficient to trigger spontaneous motility in absence of HGF. Providing the first evidence that tyrosine phosphorylation of Dgk-α is required for growth-factors-induced activation and membrane recruitment, these findings underscore its relevance as a rheostat, whose activation is a threshold to elicit growth factors-induced migratory signaling.
Journal of Immunology | 2011
Gianluca Baldanzi; Andrea Pighini; Valentina Bettio; Elena Rainero; Sara Traini; Federica Chianale; Paolo Porporato; Nicoletta Filigheddu; Riccardo Mesturini; Shu-Ping Song; Tamás Schweighoffer; Laura Patrussi; Cosima T. Baldari; Xiao-Ping Zhong; Wim J. van Blitterswijk; Fabiola Sinigaglia; Kim E. Nichols; Ignacio Rubio; Ornella Parolini; Andrea Graziani
Diacylglycerol kinases (DGKs) metabolize diacylglycerol to phosphatidic acid. In T lymphocytes, DGKα acts as a negative regulator of TCR signaling by decreasing diacylglycerol levels and inducing anergy. In this study, we show that upon costimulation of the TCR with CD28 or signaling lymphocyte activation molecule (SLAM), DGKα, but not DGKζ, exits from the nucleus and undergoes rapid negative regulation of its enzymatic activity. Inhibition of DGKα is dependent on the expression of SAP, an adaptor protein mutated in X-linked lymphoproliferative disease, which is essential for SLAM-mediated signaling and contributes to TCR/CD28-induced signaling and T cell activation. Accordingly, overexpression of SAP is sufficient to inhibit DGKα, whereas SAP mutants unable to bind either phospho-tyrosine residues or SH3 domain are ineffective. Moreover, phospholipase C activity and calcium, but not Src-family tyrosine kinases, are also required for negative regulation of DGKα. Finally, inhibition of DGKα in SAP-deficient cells partially rescues defective TCR/CD28 signaling, including Ras and ERK1/2 activation, protein kinase Cθ membrane recruitment, induction of NF-AT transcriptional activity, and IL-2 production. Thus SAP-mediated inhibition of DGKα sustains diacylglycerol signaling, thereby regulating T cell activation, and it may represent a novel pharmacological strategy for X-linked lymphoproliferative disease treatment.
Cellular Signalling | 2011
Nicoletta Filigheddu; Sara Sampietro; Federica Chianale; Paolo Porporato; Miriam Gaggianesi; Ilaria Gregnanin; Elena Rainero; Michele Ferrara; Beatrice Perego; Francesca Riboni; Gianluca Baldanzi; Andrea Graziani; Nicola Surico
Increased levels of endogenous and/or exogenous estrogens are one of the well known risk factors of endometrial cancer. Diacylglycerol kinases (DGKs) are a family of enzymes which phosphorylate diacylglycerol (DAG) to produce phosphatidic acid (PA), thus turning off and on DAG-mediated and PA-mediated signaling pathways, respectively. DGK α activity is stimulated by growth factors and oncogenes and is required for chemotactic, proliferative, and angiogenic signaling in vitro. Herein, using either specific siRNAs or the pharmacological inhibitor R59949, we demonstrate that DGK α activity is required for 17-β-estradiol (E2)-induced proliferation, motility, and anchorage-independent growth of Hec-1A endometrial cancer cell line. Impairment of DGK α activity also influences basal cell proliferation and growth in soft agar of Hec-1A, while it has no effects on basal cell motility. Moreover, we show that DGK α activity induced by E2, as well as its observed effects, are mediated by the G protein-coupled estrogen receptor GPR30 (GPER). These findings suggest that DGK α may be a potential target in endometrial cancer therapy.
Journal of Neuroscience Methods | 2009
C. Audisio; Stefania Raimondo; S. Nicolino; Giovanna Gambarotta; Federica Di Scipio; Loredana Macrì; Francesca Montarolo; Maria G. Giacobini-Robecchi; Paolo Porporato; Nicoletta Filigheddu; Andrea Graziani; Stefano Geuna; Isabelle Perroteau
Cell transplantation therapy has raised a great interest in the perspective of its employment for nerve tissue repair. Among the various cell populations proposed, olfactory ensheathing glial cells have raised great interest over recent years, especially in the perspective of their employment for neural repair because of their homing capacity in both central and peripheral nervous system. This paper is aimed to provide an in vitro characterization of the NOBEC (neonatal olfactory bulb ensheathing cell) line that was obtained from primary cells dissociated from rat neonatal olfactory bulb (OB) and immortalized by retroviral transduction of SV40 large T antigen. Light and electron microscopy investigation showed that NOBECs are a homogeneous cell population both at structural and ultrastructural level. RT-PCR, Western blotting and immunocytochemistry showed that NOBECs express the glial markers S100, GFAP (Glial Fibrillar Acid Protein) and p75NGFR as well as NRG1 (neuregulin-1) and ErbB1-2-3 receptors; while they are negative for ErbB4. Yet, NOBECs exhibit a high proliferation and migration basal activity and can be transducted with vectors carrying GFP (green fluorescent protein) and NRG1 cDNA. Functional stimulation by means of NRG1-III-beta3 overexpression through viral transduction induced a significant increase in cell proliferation rate while it had no effect on cell migration. Altogether, these results show that NOBEC cell line retain glial features both morphologically and functionally, responding to the NRG1/ErbB-mediated gliotrophic stimulus, and represents thus a good tool for in vitro assays of glial cell manipulation and for in vivo experimental studies of glial cell transplantation in the central and peripheral nervous system.
Cancer Science | 2011
Gianluca Baldanzi; Stefano Pietronave; Deborah Locarno; Simone Merlin; Paolo Porporato; Federica Chianale; Nicoletta Filigheddu; Adriana Albini; Andrea Graziani; Maria Prat
Hepatocyte growth factor (HGF) is involved in the pathogenesis of Kaposi’s sarcoma (KS), the most frequent neoplasia in patients with AIDS, characterized by proliferating spindle cells, infiltrating inflammatory cells, angiogenesis, edema, and invasiveness. In vitro, this factor sustains the biological behavior of KS derived cells, after activation of its receptor and the downstream MAPK and AKT signals. In other cell types, namely endothelial and epithelial cells, movement, proliferation, and survival stimulated by HGF and other growth factors and cytokines depend on diacylglycerol kinases (DGK). In an effort to identify new intracellular transducers operative in KS cells, which could represent therapeutic targets, we investigated the role of DGK in KS cell movement and proliferation by treating cells with the DGK pharmacological inhibitor R59949. We report that R59949 strongly inhibits HGF‐induced KS motility, proliferation, and anchorage‐independent growth with only a partial effect on cell adhesion and spreading. R59949 does not affect cell survival, HGF receptor activation, or the classical MAPK and AKT signalling pathways. Furthermore, we carried out an siRNA screen to characterize the DGK isoforms involved in KS motility and anchorage independent growth. Our data indicate a strong involvement of DGK‐δ in KS motility and of DGK‐ι in anchorage‐independent growth. These results indicate that DGK inhibition is sufficient to impair in vitro KS cell proliferation and movement and suggest that selected DGK represent new pharmacological targets to interfere with the malignant properties of KS, independently from the well‐known RAS/MAPK and PI3K/AKT pathways. (Cancer Sci 2011; 102: 1329–1336)
Circulation | 2018
Mingchuan Li; Valentina Sala; Maria Chiara De Santis; James Cimino; Paola Cappello; Nicola Pianca; Anna Di Bona; Jean Piero Margaria; Miriam Martini; Edoardo Lazzarini; Flora Pirozzi; Luca Rossi; Irene Franco; Julia Bornbaum; Jacqueline Heger; Susanne Rohrbach; Alessia Perino; Carlo G. Tocchetti; Braulio Lima; Mauro M. Teixeira; Paolo Porporato; Rainer Schulz; Annalisa Angelini; Marco Sandri; Pietro Ameri; Sebastiano Sciarretta; Roberto César P Lima-Júnior; Marco Mongillo; Tania Zaglia; Fulvio Morello
Background: Anthracyclines, such as doxorubicin (DOX), are potent anticancer agents for the treatment of solid tumors and hematologic malignancies. However, their clinical use is hampered by cardiotoxicity. This study sought to investigate the role of phosphoinositide 3-kinase &ggr; (PI3K&ggr;) in DOX-induced cardiotoxicity and the potential cardioprotective and anticancer effects of PI3K&ggr; inhibition. Methods: Mice expressing a kinase-inactive PI3K&ggr; or receiving PI3K&ggr;-selective inhibitors were subjected to chronic DOX treatment. Cardiac function was analyzed by echocardiography, and DOX-mediated signaling was assessed in whole hearts or isolated cardiomyocytes. The dual cardioprotective and antitumor action of PI3K&ggr; inhibition was assessed in mouse mammary tumor models. Results: PI3K&ggr; kinase-dead mice showed preserved cardiac function after chronic low-dose DOX treatment and were protected against DOX-induced cardiotoxicity. The beneficial effects of PI3K&ggr; inhibition were causally linked to enhanced autophagic disposal of DOX-damaged mitochondria. Consistently, either pharmacological or genetic blockade of autophagy in vivo abrogated the resistance of PI3K&ggr; kinase-dead mice to DOX cardiotoxicity. Mechanistically, PI3K&ggr; was triggered in DOX-treated hearts, downstream of Toll-like receptor 9, by the mitochondrial DNA released by injured organelles and contained in autolysosomes. This autolysosomal PI3K&ggr;/Akt/mTOR/Ulk1 signaling provided maladaptive feedback inhibition of autophagy. PI3K&ggr; blockade in models of mammary gland tumors prevented DOX-induced cardiac dysfunction and concomitantly synergized with the antitumor action of DOX by unleashing anticancer immunity. Conclusions: Blockade of PI3K&ggr; may provide a dual therapeutic advantage in cancer therapy by simultaneously preventing anthracyclines cardiotoxicity and reducing tumor growth.
Frontiers in Oncology | 2018
Maria Chiara De Santis; Paolo Porporato; Miriam Martini; Andrea Morandi
The interplay between rewiring tumor metabolism and oncogenic driver mutations is only beginning to be appreciated. Metabolic deregulation has been described for decades as a bystander effect of genomic aberrations. However, for the biology of malignant cells, metabolic reprogramming is essential to tackle a harsh environment, including nutrient deprivation, reactive oxygen species production, and oxygen withdrawal. Besides the well-investigated glycolytic metabolism, it is emerging that several other metabolic fluxes are relevant for tumorigenesis in supporting redox balance, most notably pentose phosphate pathway, folate, and mitochondrial metabolism. The relationship between metabolic rewiring and mutant genes is still unclear and, therefore, we will discuss how metabolic needs and oncogene mutations influence each other to satisfy cancer cells’ demands. Mutations in oncogenes, i.e., PI3K/AKT/mTOR, RAS pathway, and MYC, and tumor suppressors, i.e., p53 and liver kinase B1, result in metabolic flexibility and may influence response to therapy. Since metabolic rewiring is shaped by oncogenic driver mutations, understanding how specific alterations in signaling pathways affect different metabolic fluxes will be instrumental for the development of novel targeted therapies. In the era of personalized medicine, the combination of driver mutations, metabolite levels, and tissue of origins will pave the way to innovative therapeutic interventions.
Oxidative Medicine and Cellular Longevity | 2018
Elisabeth Wyart; Simone Reano; Myriam Y. Hsu; Dario Livio Longo; Mingchuan Li; Emilio Hirsch; Nicoletta Filigheddu; Alessandra Ghigo; Chiara Riganti; Paolo Porporato
Cancer cachexia is a devastating syndrome occurring in the majority of terminally ill cancer patients. Notably, skeletal muscle atrophy is a consistent feature affecting the quality of life and prognosis. To date, limited therapeutic options are available, and research in the field is hampered by the lack of satisfactory models to study the complexity of wasting in cachexia-inducing tumors, such as pancreatic cancer. Moreover, currently used in vivo models are characterized by an explosive cachexia with a lethal wasting within few days, while pancreatic cancer patients might experience alterations long before the onset of overt wasting. In this work, we established and characterized a slow-paced model of pancreatic cancer-induced muscle wasting that promotes efficient muscular wasting in vitro and in vivo. Treatment with conditioned media from pancreatic cancer cells led to the induction of atrophy in vitro, while tumor-bearing mice presented a clear reduction in muscle mass and functionality. Intriguingly, several metabolic alterations in tumor-bearing mice were identified, paving the way for therapeutic interventions with drugs targeting metabolism.
Molecular Biology of the Cell | 2007
Nicoletta Filigheddu; Viola F. Gnocchi; Marco Coscia; Miriam Cappelli; Paolo Porporato; Riccardo Taulli; Sara Traini; Gianluca Baldanzi; Federica Chianale; Santina Cutrupi; Elisa Arnoletti; Corrado Ghè; Alberto Fubini; Nicola Surico; Fabiola Sinigaglia; Carola Ponzetto; Giampiero Muccioli; Tiziana Crepaldi; Andrea Graziani