Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gianluca Marino is active.

Publication


Featured researches published by Gianluca Marino.


Nature | 2015

Boron isotope evidence for oceanic carbon dioxide leakage during the last deglaciation

Miguel A. Martínez-Botí; Gianluca Marino; Gavin L. Foster; Patrizia Ziveri; Michael J. Henehan; James W. B. Rae; P.G. Mortyn; Derek Vance

Atmospheric CO2 fluctuations over glacial–interglacial cycles remain a major challenge to our understanding of the carbon cycle and the climate system. Leading hypotheses put forward to explain glacial–interglacial atmospheric CO2 variations invoke changes in deep-ocean carbon storage, probably modulated by processes in the Southern Ocean, where much of the deep ocean is ventilated. A central aspect of such models is that, during deglaciations, an isolated glacial deep-ocean carbon reservoir is reconnected with the atmosphere, driving the atmospheric CO2 rise observed in ice-core records. However, direct documentation of changes in surface ocean carbon content and the associated transfer of carbon to the atmosphere during deglaciations has been hindered by the lack of proxy reconstructions that unambiguously reflect the oceanic carbonate system. Radiocarbon activity tracks changes in ocean ventilation, but not in ocean carbon content, whereas proxies that record increased deglacial upwelling do not constrain the proportion of upwelled carbon that is degassed relative to that which is taken up by the biological pump. Here we apply the boron isotope pH proxy in planktic foraminifera to two sediment cores from the sub-Antarctic Atlantic and the eastern equatorial Pacific as a more direct tracer of oceanic CO2 outgassing. We show that surface waters at both locations, which partly derive from deep water upwelled in the Southern Ocean, became a significant source of carbon to the atmosphere during the last deglaciation, when the concentration of atmospheric CO2 was increasing. This oceanic CO2 outgassing supports the view that the ventilation of a deep-ocean carbon reservoir in the Southern Ocean had a key role in the deglacial CO2 rise, although our results allow for the possibility that processes operating in other regions may also have been important for the glacial–interglacial ocean–atmosphere exchange of carbon.


Nature | 2015

Bipolar seesaw control on last interglacial sea level

Gianluca Marino; Eelco J. Rohling; Laura Rodríguez-Sanz; Katharine M Grant; David Heslop; Andrew P. Roberts; J D Stanford; Jimin Yu

Our current understanding of ocean–atmosphere–cryosphere interactions at ice-age terminations relies largely on assessments of the most recent (last) glacial–interglacial transition, Termination I (T-I). But the extent to which T-I is representative of previous terminations remains unclear. Testing the consistency of termination processes requires comparison of time series of critical climate parameters with detailed absolute and relative age control. However, such age control has been lacking for even the penultimate glacial termination (T-II), which culminated in a sea-level highstand during the last interglacial period that was several metres above present. Here we show that Heinrich Stadial 11 (HS11), a prominent North Atlantic cold episode, occurred between 135 ± 1 and 130 ± 2 thousand years ago and was linked with rapid sea-level rise during T-II. Our conclusions are based on new and existing data for T-II and the last interglacial that we collate onto a single, radiometrically constrained chronology. The HS11 cold episode punctuated T-II and coincided directly with a major deglacial meltwater pulse, which predominantly entered the North Atlantic Ocean and accounted for about 70 per cent of the glacial–interglacial sea-level rise. We conclude that, possibly in response to stronger insolation and CO2 forcing earlier in T-II, the relationship between climate and ice-volume changes differed fundamentally from that of T-I. In T-I, the major sea-level rise clearly post-dates Heinrich Stadial 1. We also find that HS11 coincided with sustained Antarctic warming, probably through a bipolar seesaw temperature response, and propose that this heat gain at high southern latitudes promoted Antarctic ice-sheet melting that fuelled the last interglacial sea-level peak.


Geology | 2007

Aegean Sea as driver of hydrographic and ecological changes in the eastern Mediterranean

Gianluca Marino; Eelco J. Rohling; W. Irene C. Rijpstra; Francesca Sangiorgi; Stefan Schouten; Jaap S. Sinninghe Damsté

The eastern Mediterranean is undergoing a long-term increase in net evaporation, which may have preconditioned the profound changes that occurred in its deep-sea ventilation over the past two decades. We test the sensitivity of Aegean convective deep-water formation to forcing in the opposite sense, based on a last interglacial episode of enhanced freshwater injection into the eastern Mediterranean. We find that Aegean subsurface ventilation collapsed completely within 40 ± 20 yr, promoting euxinic conditions hostile to aerobic life that expanded toward the photic layer within 650 ± 250 yr. Similar conditions extended throughout the eastern Mediterranean 300 ± 120 yr later. These findings emphasize the exceptional sensitivity of Aegean deep-water formation to climate forcing, driving large-scale hydrographic adjustments throughout the eastern Mediterranean and beyond.


Paleoceanography | 2012

Abrupt shoaling of the nutricline in response to massive freshwater flooding at the onset of the last interglacial sapropel event

Michaël Grelaud; Gianluca Marino; Patrizia Ziveri; Eelco J. Rohling

A detailed assessment of the respective roles of production, export, and subsequent preservation of organic carbon (Corg) in the eastern Mediterranean (EMED) sediments during the formation of sapropels remains elusive. Here we present new micropaleontological results for both surface samples taken at several locations in the EMED and last interglacial sapropel S5 from core LC21 in the southeastern Aegean Sea. A strong exponential anticorrelation between relative abundances of the lower photic zone coccolithophore Florisphaera profunda in the surface sediments and modern concentrations of chlorophyll a (Chl-a) at the sea surface suggests that F. profunda percentages can be used to track past productivity changes in the EMED. Prior to S5 deposition, an abrupt and large increase of F. profunda percentages in LC21 coincided (within the multidecadal resolution of the records) with the marked freshening of EMED surface waters. This suggests a strong coupling between freshwater-bound surface to intermediate water (density) stratification and enhanced upward advection of nutrients to the base of the photic zone, fuelling a productive deep chlorophyll maximum (DCM) underneath a nutrient-starved surface layer. Our findings imply that (at least) at the onset of sapropel formation physical and biogeochemical processes likely operated in tandem, enabling high Corg accumulation at the seafloor.


Geology | 2015

Saline Indian Ocean Waters invaded the South Atlantic thermocline during glacial termination II

Paolo Scussolini; Gianluca Marino; Geert-Jan A. Brummer; Frank J C Peeters

Salty and warm Indian Ocean waters enter the South Atlantic via the Agulhas leakage, south of Africa. Model simulations and proxy evidence of Agulhas leakage strengthening during glacial terminations led to the hypothesis that it was an important modulator of the Atlantic Ocean circulation. Yet, the fate of the leakage salinity and temperature anomalies remains undocumented beyond the southern tip of Africa. Downstream of the leakage, new paleoceanographic evidence from the central Walvis Ridge (southeast Atlantic) shows that salinity increased at the thermocline, and less so at the surface, during glacial termination II. Thermocline salinity change coincided with higher frequency of Agulhas rings passage at the core location and with salinity maxima in the Agulhas leakage area, suggesting that leakage waters were incorporated in the Atlantic circulation through the thermocline. Hydrographic changes at the Walvis Ridge and in the leakage area display a distinct two-step structure, with a reversal at ca. 134 ka. This matched a wet interlude within the East Asia weak monsoon interval of termination II, and a short-lived North Atlantic warming. Such concurrence points to a Bolling-Allerod–like recovery of the Atlantic circulation amidst termination II, with a northward shift of the Intertropical Convergence Zone and Southern Hemisphere westerlies, and attendant curtailment of the interocean connection south of Africa.


Paleoceanography | 2016

Constraining past seawater δ18O and temperature records developed from foraminiferal geochemistry

Kaustubh Thirumalai; Terrence M. Quinn; Gianluca Marino

Paired measurements of magnesium-to-calcium ratios (Mg/Ca) and the stable oxygen isotopic composition (δ18O) in foraminifera have significantly advanced our knowledge of the climate system by providing information on past temperature and seawater δ18O (δ18Osw, a proxy for salinity and ice volume). However, multiple sources of uncertainty exist in transferring these downcore geochemical data into quantitative paleoclimate reconstructions. Here, we develop a computational toolkit entitled Paleo-Seawater Uncertainty Solver (PSU Solver) that performs bootstrap Monte Carlo simulations to constrain these various sources of uncertainty. PSU Solver calculates temperature and δ18Osw, and their respective confidence intervals using an iterative approach with user-defined errors, calibrations, and sea-level curves. Our probabilistic approach yields reduced uncertainty constraints compared to theoretical considerations and commonly used propagation exercises. We demonstrate the applicability of PSU Solver for published records covering three timescales: the late Holocene, the last deglaciation, and the last glacial period. We show that the influence of salinity on Mg/Ca can considerably alter the structure and amplitude of change in the resulting reconstruction and can impact the interpretation of paleoceanographic time series. We also highlight the sensitivity of the records to various inputs of sea-level curves, transfer functions, and uncertainty constraints. PSU Solver offers an expeditious yet rigorous approach to test the robustness of past climate variability inferred from paired Mg/Ca-δ18O measurements.


Geochemistry Geophysics Geosystems | 2017

Remanence acquisition efficiency in biogenic and detrital magnetite and recording of geomagnetic paleointensity

Liang Chen; David Heslop; Andrew P. Roberts; Liao Chang; Xiang Zhao; Helen V. McGregor; Gianluca Marino; Laura Rodríguez-Sanz; Eelco J. Rohling; Heiko Pälike

Relative paleointensity (RPI) variations of Earths magnetic field are widely used to understand geomagnetic field behavior and to develop age models for sedimentary sequences. RPI estimation is based on a series of assumptions. One key assumption that is rarely considered is that all magnetic particles in the sediment acquired a magnetization in an identical manner. In this paper, we test this assumption for sediments from the eastern equatorial Pacific Ocean that record well-documented global RPI variations over the last ∼780 kyr. The magnetization is carried by two stable single domain magnetic components, which we identify as magnetite magnetofossils and titanomagnetite nanoparticle inclusions within larger silicate particles. By analyzing signals carried by the two components separately, we determine for the first time that magnetic nanoparticle inclusions can cause their host particles to record reliable but inefficient sedimentary paleomagnetic signals. The magnetization carried by biogenic magnetite is acquired more efficiently than that carried by the nanoparticle inclusions. Variations in the concentration of both components are modulated climatically so that they record nearly identical RPI signals. In many sediment types, there is no correlation between the concentrations of different magnetic components so that variable remanence acquisition efficiency will complicate RPI recording. Our work demonstrates that detailed assessment of paleomagnetic recording by each constituent magnetic component needs to become a routine part of sedimentary RPI analysis.


Annual Review of Marine Science | 2018

Comparing Climate Sensitivity, Past and Present

Eelco J. Rohling; Gianluca Marino; Gavin L. Foster; Philip Goodwin; Anna von der Heydt; Peter Köhler

Climate sensitivity represents the global mean temperature change caused by changes in the radiative balance of climate; it is studied for both present/future (actuo) and past (paleo) climate variations, with the former based on instrumental records and/or various types of model simulations. Paleo-estimates are often considered informative for assessments of actuo-climate change caused by anthropogenic greenhouse forcing, but this utility remains debated because of concerns about the impacts of uncertainties, assumptions, and incomplete knowledge about controlling mechanisms in the dynamic climate system, with its multiple interacting feedbacks and their potential dependence on the climate background state. This is exacerbated by the need to assess actuo- and paleoclimate sensitivity over different timescales, with different drivers, and with different (data and/or model) limitations. Here, we visualize these impacts with idealized representations that graphically illustrate the nature of time-dependent actuo- and paleoclimate sensitivity estimates, evaluating the strengths, weaknesses, agreements, and differences of the two approaches. We also highlight priorities for future research to improve the use of paleo-estimates in evaluations of current climate change.


Paleoceanography | 2014

Effects of midlatitude westerlies on the paleoproductivity at the Agulhas Bank slope during the penultimate glacial cycle: Evidence from coccolith Sr/Ca ratios

Luz María Mejía; Patrizia Ziveri; Marilisa Cagnetti; Clara T. Bolton; Rainer Zahn; Gianluca Marino; Gema Martínez-Méndez; Heather M. Stoll

Modern primary productivity on the Agulhas Bank, off South Africa, has been proposed to be linked to the midlatitude westerlies. A paleoproductivity record from this area may therefore resolve temporal changes in the westerly dynamics. Accordingly, we produced a coccolith Sr/Ca-based paleoproductivity record from core MD96-2080 (Agulhas Bank slope) during the penultimate glacial-interglacial cycle. Deriving the productivity signal from Sr/Ca requires a correction for a temperature effect, here constrained using Mg/Ca sea surface temperatures from the foraminifer Globigerina bulloides from core MD96-2080. Phases of depressed productivity coincided with periods of stratification in the same core, indicated by high relative abundances of the coccolithophore Florisphaera profunda and with low relative abundances of the upwelling indicator G. bulloides in the nearby Cape Basin. These observations collectively suggest that productivity was regulated by upwelling throughout this region. We infer that, as in the present, periods of low productivity result from a more northerly position of the westerlies, potentially accompanied by subtropical front displacements, and blockage of upwelling promoting easterlies. Productivity minima also coincide with periods of increased ice-rafted detritus (IRD) deposition on the Agulhas Plateau, which also indicates extreme northward positions of the westerlies. The influence of the westerlies appears to be obliquity conditioned, as productivity minima (and IRD maxima) occur during low-obliquity intervals. The dynamic connection between productivity and the westerlies is supported by coeval salinity changes in the South Indian Gyre that likewise respond sensitively to a poleward contraction of the westerlies.


Scientific Reports | 2016

Mediterranean circulation perturbations over the last five centuries: Relevance to past Eastern Mediterranean Transient-type events

Alessandro Incarbona; Belen Martrat; P. Graham Mortyn; Mario Sprovieri; Patrizia Ziveri; Alexandra Gogou; Gabriel Jordá; Elena Xoplaki; Juerg Luterbacher; Leonardo Langone; Gianluca Marino; Laura Rodríguez-Sanz; Maria Triantaphyllou; Enrico Di Stefano; Joan O. Grimalt; Giorgio Tranchida; Rodolfo Sprovieri; Salvatore Mazzola

The Eastern Mediterranean Transient (EMT) occurred in the Aegean Sea from 1988 to 1995 and is the most significant intermediate-to-deep Mediterranean overturning perturbation reported by instrumental records. The EMT was likely caused by accumulation of high salinity waters in the Levantine and enhanced heat loss in the Aegean Sea, coupled with surface water freshening in the Sicily Channel. It is still unknown whether similar transients occurred in the past and, if so, what their forcing processes were. In this study, sediments from the Sicily Channel document surface water freshening (SCFR) at 1910 ± 12, 1812 ± 18, 1725 ± 25 and 1580 ± 30 CE. A regional ocean hindcast links SCFR to enhanced deep-water production and in turn to strengthened Mediterranean thermohaline circulation. Independent evidence collected in the Aegean Sea supports this reconstruction, showing that enhanced bottom water ventilation in the Eastern Mediterranean was associated with each SCFR event. Comparison between the records and multi-decadal atmospheric circulation patterns and climatic external forcings indicates that Mediterranean circulation destabilisation occurs during positive North Atlantic Oscillation (NAO) and negative Atlantic Multidecadal Oscillation (AMO) phases, reduced solar activity and strong tropical volcanic eruptions. They may have recurrently produced favourable deep-water formation conditions, both increasing salinity and reducing temperature on multi-decadal time scales.

Collaboration


Dive into the Gianluca Marino's collaboration.

Top Co-Authors

Avatar

Eelco J. Rohling

Australian National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stefan Schouten

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar

Andrew P. Roberts

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Katharine M Grant

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Laura Rodríguez-Sanz

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Rainer Zahn

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marta Rodrigo-Gámiz

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge