Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gianluigi Zona is active.

Publication


Featured researches published by Gianluigi Zona.


Journal of Immunology | 2009

NK Cells Recognize and Kill Human Glioblastoma Cells with Stem Cell-Like Properties

Roberta Castriconi; Antonio Daga; Alessandra Dondero; Gianluigi Zona; Pietro Luigi Poliani; Alice Melotti; Fabrizio Griffero; Daniela Marubbi; Renato Spaziante; Francesca Bellora; Lorenzo Moretta; Alessandro Moretta; Giorgio Corte; Cristina Bottino

In this study, cancer cells were isolated from tumor specimens of nine glioblastoma patients. Glioblastoma cells, cultured under suitable culture conditions, displayed markers typical of neural stem cells, were capable of partial multilineage differentiation in vitro, and gave origin to infiltrating tumors when orthotopically injected in NOD/SCID mice. These cells, although resistant to freshly isolated NK cells, were highly susceptible to lysis mediated by both allogeneic and autologous IL-2 (or IL-15)-activated NK cells. Indeed, all stem cell-cultured glioblastoma cells analyzed did not express protective amounts of HLA class I molecules, while expressing various ligands of activating NK receptors that triggered optimal NK cell cytotoxicity. Importantly, glioblastoma stem cells expressed high levels of PVR and Nectin-2, the ligands of DNAM-1-activating NK receptor.


Molecular Cancer Research | 2009

Comparative Analysis of DNA Repair in Stem and Nonstem Glioma Cell Cultures

Monica Ropolo; Antonio Daga; Fabrizio Griffero; Mara Foresta; Gianluigi Casartelli; Annalisa Zunino; Alessandro Poggi; Enrico Cappelli; Gianluigi Zona; Renato Spaziante; Giorgio Corte; Guido Frosina

It has been reported that cancer stem cells may contribute to glioma radioresistance through preferential activation of the DNA damage checkpoint response and an increase in DNA repair capacity. We have examined DNA repair in five stem and nonstem glioma cell lines. The population doubling time was significantly increased in stem compared with nonstem cells, and enhanced activation of Chk1 and Chk2 kinases was observed in untreated CD133+ compared with CD133− cells. Neither DNA base excision or single-strand break repair nor resolution of pH2AX nuclear foci were increased in CD133+ compared with CD133− cells. We conclude that glioma stem cells display elongated cell cycle and enhanced basal activation of checkpoint proteins that might contribute to their radioresistance, whereas enhanced DNA repair is not a common feature of these cells. (Mol Cancer Res 2009;7(3):383–92)


Neurochemistry International | 2006

Expression of CXC chemokine receptors 1-5 and their ligands in human glioma tissues : Role of CXCR4 and SDF1 in glioma cell proliferation and migration

Adriana Bajetto; Federica Barbieri; Alessandra Dorcaratto; Simone Barbero; Antonio Daga; Carola Porcile; Jean Louis Ravetti; Gianluigi Zona; Renato Spaziante; Giorgio Corte; Gennaro Schettini; Tullio Florio

Chemokines have been involved in cellular processes associated to malignant transformation such as proliferation, migration and angiogenesis. The expression of five CXC chemokine receptors and their main ligands was analysed by RT-PCR in 31 human astrocytic neoplasms. The mRNAs for all the receptors analysed were identified in a high percentage of tumours, while their ligands showed lower expression. CXCR4 and SDF1 were the most frequently mRNA identified (29/31 and 13/31 of the gliomas studied, respectively). Thus, we further analysed the cell localization of CXCR4 and SDF1 in immunohistochemistry experiments. We show a marked co-localization of CXCR4 and SDF1 in tumour cells, mainly evident in psudolpalisade and microcystic degeneration areas and in the vascular endothelium. In addition, hSDF1alpha induced a significant increase of DNA synthesis in primary human glioblastoma cell cultures and chemotaxis in a glioblastoma cell line. These results provide evidence of the expression of multiple CXC chemokines and their receptors in brain tumours and that in particular CXCR4 and SDF1 sustain proliferation and migration of glioma cells to promote malignant progression.


Journal of Biological Chemistry | 2009

Different Response of Human Glioma Tumor-initiating Cells to Epidermal Growth Factor Receptor Kinase Inhibitors

Fabrizio Griffero; Antonio Daga; Daniela Marubbi; Maria Cristina Capra; Alice Melotti; Alessandra Pattarozzi; Monica Gatti; Adriana Bajetto; Carola Porcile; Federica Barbieri; Roberto E. Favoni; Michele Lo Casto; Gianluigi Zona; Renato Spaziante; Tullio Florio; Giorgio Corte

Because a subpopulation of cancer stem cells (tumor-initiating cells, TICs) is believed to be responsible for the development, progression, and recurrence of many tumors, we evaluated the in vitro sensitivity of human glioma TICs to epidermal growth factor receptor (EGFR) kinase inhibitors (erlotinib and gefitinib) and possible molecular determinants for their effects. Cells isolated from seven glioblastomas (GBM 1-7) and grown using neural stem cell permissive conditions were characterized for in vivo tumorigenicity, expression of tumor stem cell markers (CD133, nestin), and multilineage differentiation properties, confirming that these cultures are enriched in TICs. TIC cultures were challenged with increasing concentrations of erlotinib and gefitinib, and their survival was evaluated after 1-4 days. In most cases, a time- and concentration-dependent cell death was observed, although GBM 2 was completely insensitive to both drugs, and GBM 7 was responsive only to the highest concentrations tested. Using a radioligand binding assay, we show that all GBM TICs express EGFR. Erlotinib and gefitinib inhibited EGFR and ERK1/2 phosphorylation/activation in all GBMs, irrespective of the antiproliferative response observed. However, under basal conditions GBM 2 showed a high Akt phosphorylation that was completely insensitive to both drugs, whereas GBM 7 was completely insensitive to gefitinib, and Akt inactivation occurred only for the highest erlotinib concentration tested, showing a precise relationship with the antiproliferative effects of the drug. Interestingly, in GBM 2, phosphatase and tensin homolog expression was significantly down-regulated, possibly accounting for the insensitivity to the drugs. In conclusion, glioma TICs are responsive to anti-EGFR drugs, but phosphatase and tensin homolog expression and Akt inhibition seem to be necessary for such effect.


Cell Cycle | 2013

Metformin selectively affects human glioblastoma tumor-initiating cell viability: A role for metformin-induced inhibition of Akt

Roberto Würth; Alessandra Pattarozzi; Monica Gatti; Adirana Bajetto; Alessandro Corsaro; Alessia Parodi; Rodolfo Sirito; Michela Massollo; Cecilia Marini; Gianluigi Zona; Daniela Fenoglio; Gianmario Sambuceti; Gilberto Filaci; Antonio Daga; Federica Barbieri; Tullio Florio

Cancer stem cell theory postulates that a small population of tumor-initiating cells is responsible for the development, progression and recurrence of several malignancies, including glioblastoma. In this perspective, tumor-initiating cells represent the most relevant target to obtain effective cancer treatment. Metformin, a first-line drug for type II diabetes, was reported to possess anticancer properties affecting the survival of cancer stem cells in breast cancer models. We report that metformin treatment reduced the proliferation rate of tumor-initiating cell-enriched cultures isolated from four human glioblastomas. Metformin also impairs tumor-initiating cell spherogenesis, indicating a direct effect on self-renewal mechanisms. Interestingly, analyzing by FACS the antiproliferative effects of metformin on CD133-expressing subpopulation, a component of glioblastoma cancer stem cells, a higher reduction of proliferation was observed as compared with CD133-negative cells, suggesting a certain degree of cancer stem cell selectivity in its effects. In fact, glioblastoma cell differentiation strongly reduced sensitivity to metformin treatment. Metformin effects in tumor-initiating cell-enriched cultures were associated with a powerful inhibition of Akt-dependent cell survival pathway, while this pathway was not affected in differentiated cells. The specificity of metformin antiproliferative effects toward glioblastoma tumor-initiating cells was confirmed by the lack of significant inhibition of normal human stem cells (umbilical cord-derived mesenchymal stem cells) in vitro proliferation after metformin exposure. Altogether, these data clearly suggest that metformin exerts antiproliferative activity on glioblastoma cells, showing a higher specificity toward tumor-initiating cells, and that the inhibition of Akt pathway may represent a possible intracellular target of this effect.


Endocrine-related Cancer | 2008

Efficacy of a dopamine-somatostatin chimeric molecule, BIM-23A760, in the control of cell growth from primary cultures of human non-functioning pituitary adenomas: a multi-center study

Tullio Florio; Federica Barbieri; Renato Spaziante; Gianluigi Zona; Leo J. Hofland; Peter M. van Koetsveld; Richard A. Feelders; Günter K. Stalla; Marily Theodoropoulou; Michael D. Culler; Jesse Z. Dong; John E. Taylor; Jacques-Pierre Moreau; Alexandru Saveanu; Ginette Gunz; Henry Dufour; Philippe Jaquet

Dopamine D2 and somatostatin receptors (sstrs) were reported to affect non-functioning pituitary adenoma (NFPA) proliferation in vitro. However, the reported results differ according to the experimental conditions used. We established an experimental protocol allowing reproducible evaluation of NFPA cell proliferation in vitro, to test and compare the antiproliferative effects of dopamine and somatostatin analogs (alone or in combination) with the activity of the dopamine-somatostatin chimeric molecule BIM-23A760. The protocol was utilized by four independent laboratories, studying 38 fibroblast-deprived NFPA cell cultures. Cells were characterized for GH, POMC, sstr1-sstr5, total dopamine D2 receptor (D2R) (in all cases), and D2 receptor long and short isoforms (in 15 out of 38 cases) mRNA expression and for alpha-subunit, LH, and FSH release. D2R, sstr3, and sstr2 mRNAs were consistently observed, with the dominant expression of D2R (2.9+/-2.6 copy/copy beta-glucuronidase; mean+/-s.e.m.), when compared with sstr3 and sstr2 (0.6+/-1.0 and 0.3+/-0.6 respectively). BIM-23A760, a molecule with high affinity for D2R and sstr2, significantly inhibited [3H]thymidine incorporation in 23 out of 38 (60%) NFPA cultures (EC50=1.2 pM and Emax=-33.6+/-3.7%). BIM-23A760 effects were similar to those induced by the selective D2R agonist cabergoline that showed a statistically significant inhibition in 18 out of 27 tumors (compared with a significant inhibition obtained in 17 out of 27 tumors using BIM-23A760, in the same subgroup of adenomas analyzed), while octreotide was effective in 13 out of 27 cases. In conclusion, superimposable data generated in four independent laboratories using a standardized protocol demonstrate that, in vitro, chimeric dopamine/sstr agonists are effective in inhibiting cell proliferation in two-thirds of NFPAs.


Annals of the New York Academy of Sciences | 2002

Expression of the chemokine receptor CXCR4 and its ligand stromal cell-derived factor 1 in human brain tumors and their involvement in glial proliferation in vitro

Simone Barbero; Adriana Bajetto; Rudy Bonavia; Carola Porcile; Patrizia Piccioli; Paolo Pirani; Jean Louis Ravetti; Gianluigi Zona; Renato Spaziante; Tullio Florio; Gennaro Schettini

Abstract: Chemokines are a family of proteins that chemoattract and activate cells by interacting with specific receptors on the surface of their targets. They are grouped into four classes based on the position of key cysteine residues: C, CC, CXC, and CX3C. Stromal cell‐derived factor 1 (SDF1), the ligand of the CXCR4 receptor, is a CXC chemokine involved in chemotaxis and brain development that also acts as coreceptor for HIV‐1 infection. It has been proposed that CXCR4 is overexpressed and required for proliferation in human brain tumor cells. We previously demonstrated that CXCR4 and SDF1 are expressed in culture of cortical type I rat astrocytes, cortical neurons, and cerebellar granule cells. In this study, we analyzed the expression of CXCR4 and SDF1 in four human brain tumor tissues, showing that CXCR4 is expressed in all tumors analyzed, whereas SDF1 is expressed only in two tumor tissues. We also investigated the possible functions of CXCR4 expressed in rat type I cortical astrocytes, demonstrating that SDF1α stimulates the proliferation of these cells in vitro. Moreover, we studied by western blot the intracellular pathway involved in cell proliferation, demonstrating that SDF1α induces the ERK1/2 phosphorylation that is reduced by the PD98059 compound, an MEK inhibitor.


Clinical Cancer Research | 2008

Overexpression of Stromal Cell–Derived Factor 1 and Its Receptor CXCR4 Induces Autocrine/Paracrine Cell Proliferation in Human Pituitary Adenomas

Federica Barbieri; Adriana Bajetto; Ralf Stumm; Alessandra Pattarozzi; Carola Porcile; Gianluigi Zona; Alessandra Dorcaratto; Jean Louis Ravetti; Francesco Minuto; Renato Spaziante; Gennaro Schettini; Diego Ferone; Tullio Florio

Purpose: Hypothalamic or locally produced growth factors and cytokines control pituitary development, functioning, and cell division. We evaluated the expression of the chemokine stromal cell–derived factor 1 (SDF1) and its receptor CXCR4 in human pituitary adenomas and normal pituitary tissues and their role in cell proliferation. Experimental Design: The expression of SDF1 and CXCR4 in 65 human pituitary adenomas and 4 human normal pituitaries was determined by reverse transcription-PCR, immunohistochemistry, and confocal immunofluorescence. The proliferative effect of SDF1 was evaluated in eight fibroblast-free human pituitary adenoma cell cultures. Results: CXCR4 mRNA was expressed in 92% of growth hormone (GH)-secreting pituitary adenomas (GHoma) and 81% of nonfunctioning pituitary adenomas (NFPA), whereas SDF1 was identified in 63% and 78% of GHomas and NFPAs, respectively. Immunostaining for CXCR4 and SDF1 showed a strong homogenous labeling in all tumoral cells in both GHomas and NFPAs. In normal tissues, CXCR4 and SDF1 were expressed only in a subset of anterior pituitary cells, with a lower expression of SDF1 compared with its cognate receptor. CXCR4 and SDF1 were not confined to a specific cell population in the anterior pituitary but colocalized with discrete subpopulations of GH-, prolactin-, and adrenocorticorticotropic hormone–secreting cells. Conversely, most of the SDF1-containing cells expressed CXCR4. In six of eight pituitary adenoma primary cultures, SDF1 induced a statistically significant increase in DNA synthesis that was prevented by the treatment with the CXCR4 antagonist AMD3100 or somatostatin. Conclusions: CXCR4 and SDF1 are overexpressed in human pituitary adenomas and CXCR4 activation may contribute to pituitary cell proliferation and, possibly, to adenoma development `in humans.


Toxicology | 2013

Inhibition of CXCL12/CXCR4 autocrine/paracrine loop reduces viability of human glioblastoma stem-like cells affecting self-renewal activity.

Monica Gatti; Alessandra Pattarozzi; Adriana Bajetto; Roberto Würth; Antonio Daga; Pietro Fiaschi; Gianluigi Zona; Tullio Florio; Federica Barbieri

Cancer stem cells (CSCs) or tumor initiating cells (TICs) drive glioblastoma (GBM) development, invasiveness and drug resistance. Distinct molecular pathways might regulate CSC biology as compared to cells in the bulk tumor mass, representing potential therapeutic targets. Chemokine CXCL12 and its receptor CXCR4 control proliferation, invasion and angiogenesis in GBM cell lines and primary cultures, but little is known about their activity in GBM CSCs. We demonstrate that CSCs, isolated from five human GBMs, express CXCR4 and release CXCL12 in vitro, although different levels of expression and secretion were observed in individual cultures, as expected for the heterogeneity of GBMs. CXCL12 treatment induced Akt-mediated significant pro-survival and self-renewal activities, while proliferation was induced at low extent. The role of CXCR4 signaling in CSC survival and self-renewal was further demonstrated using the CXCR4 antagonist AMD3100 that reduced self-renewal and survival with greater efficacy in the cultures that released higher CXCL12 amounts. The specificity of CXCL12 in sustaining CSC survival was demonstrated by the lack of AMD3100-dependent inhibition of viability in differentiated cells derived from the same GBMs. These findings, although performed on a limited number of tumor samples, suggest that the CXCL12/CXCR4 interaction mediates survival and self-renewal in GBM CSCs with high selectivity, thus emerging as a candidate system responsible for maintenance of cancer progenitors, and providing survival benefits to the tumor.


Neuro-oncology | 2007

CXCR4 and SDF1 expression in human meningiomas: A proliferative role in tumoral meningothelial cells in vitro

Adriana Bajetto; Federica Barbieri; Alessandra Pattarozzi; Alessandra Dorcaratto; Carola Porcile; Jean Louis Ravetti; Gianluigi Zona; Renato Spaziante; Gennaro Schettini; Tullio Florio

Chemokines participate in cellular processes associated with tumor proliferation, migration, and angiogenesis. We previously demonstrated that stromal cell-derived factor 1 (SDF1) exerts a mitogenic activity in glioblastomas through the activation of its receptor CXCR4. Here we studied the expression of this chemokine in human meningiomas and its possible role in cell proliferation. Reverse transcriptase-PCR analysis for CXCR4 and SDF1 was performed on 55 human meningiomas (47 WHO grade I, 5 WHO II, and 3 WHO III). Immunolabeling for CXCR4 and SDF1 was performed on paraffin-embedded sections of these tumors. [(3)H]Thymidine uptake and Western blot analyses were performed on primary meningeal cell cultures of tumors to evaluate the proliferative activity of human SDF1alpha (hSDF1alpha) in vitro and the involvement of extracellular signal-regulated kinase 1/2 (ERK1/2) activation in this process. CXCR4 mRNA was expressed by 78% of the tumor specimens and SDF1 mRNA by 53%. CXCR4 and SDF1 were often detected in the same tumor tissues and colocalized with epithelial membrane antigen immunostaining. In 9 of 12 primary cultures from meningiomas, hSDF1alpha induced significant cell proliferation that was strongly reduced by the mitogen-activated protein kinase kinase inhibitor PD98059, involving ERK1/2 activation in the proliferative signal of hSDF1alpha. In fact, CXCR4 stimulation led to ERK1/2 phosphorylation/activation. In addition, the hSDF1alpha-induced cell proliferation was significantly correlated with the MIB1 staining index in the corresponding surgical specimen. In conclusion, we found that human meningiomas express CXCR4 and SDF1 and that hSDF1alpha induces proliferation in primary meningioma cell cultures through the activation of ERK1/2.

Collaboration


Dive into the Gianluigi Zona's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gennaro Schettini

National Cancer Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge