Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gianna Palmieri is active.

Publication


Featured researches published by Gianna Palmieri.


Applied and Environmental Microbiology | 2000

Copper induction of laccase isoenzymes in the ligninolytic fungus Pleurotus ostreatus.

Gianna Palmieri; Paola Giardina; Carmen Bianco; Bianca Fontanella; Giovanni Sannia

ABSTRACT Pleurotus ostreatus is a white rot basidiomycete that produces several extracellular laccase isoenzymes, including phenol oxidase A1b (POXA1b), POXA2, and POXC. POXC was the most abundant isoenzyme produced under all of the growth conditions examined in this study. Copper was the most efficient inducer of laccase activity among the putative inducers tested. The amounts of all of the previously described laccase isoenzymes increased substantially in copper-supplemented cultures. Under these conditions expression of POX isoenzymes was regulated at the level of gene transcription. It is worth noting that poxa1b mRNA was the most abundant induced transcript at all of the growth times analyzed, and the amount of this mRNA increased until day 7. The discrepancy between thepoxa1b transcript and protein amounts can be explained by the presence of a high level of the protein in P. ostreatuscellular extract, which indicated that the POXA1b isoenzyme could be inefficiently secreted and/or that its physiological activity could occur inside the cell or on the cell wall. Moreover, the POXA1b isoenzyme behaved uniquely, as its activity was maximal on the second day of growth and then decreased. An analysis performed with protease inhibitors revealed that the loss of extracellular POXA1b activity could have been due to the presence of specific proteases secreted into the copper-containing culture medium that affected the extracellular POXA1b isoenzyme.


Applied and Environmental Microbiology | 2001

Purification, Characterization, and Functional Role of a Novel Extracellular Protease from Pleurotus ostreatus

Gianna Palmieri; Carmen Bianco; Giovanna Cennamo; Paola Giardina; Gennaro Marino; Maria Chiara Monti; Giovanni Sannia

ABSTRACT A new extracellular protease (PoSl; Pleurotus ostreatus subtilisin-like protease) from P. ostreatus culture broth has been purified and characterized. PoSl is a monomeric glycoprotein with a molecular mass of 75 kDa, a pI of 4.5, and an optimum pH in the alkaline range. The inhibitory profile indicates that PoSl is a serine protease. The N-terminal and three tryptic peptide sequences of PoSl have been determined. The homology of one internal peptide with conserved sequence around the Asp residue of the catalytic triad in the subtilase family suggests that PoSl is a subtilisin-like protease. This hypothesis is further supported by the finding that PoSl hydrolysis sites of the insulin B chain match those of subtilisin. PoSl activity is positively affected by calcium. A 10-fold decrease in the Km value in the presence of calcium ions can reflect an induced structural change in the substrate recognition site region. Furthermore, Ca2+binding slows PoSl autolysis, triggering the protein to form a more compact structure. These effects have already been observed for subtilisin and other serine proteases. Moreover, PoSl protease seems to play a key role in the regulation of P. ostreatuslaccase activity by degrading and/or activating different isoenzymes.


Journal of Protein Chemistry | 2001

Structural and kinetic characterization of native laccases from Pleurotus ostreatus, Rigidoporus lignosus, and Trametes trogii.

Anna Maria V. Garzillo; Maria Chiara Colao; Vincenzo Buonocore; Romina Oliva; Lucia Falcigno; Michele Saviano; Anna Maria Santoro; Riccardo Zappala; Raffaele P. Bonomo; Carmelina Bianco; Paola Giardina; Gianna Palmieri; Giovanni Sannia

A comparative study has been performed on five native laccases purified from the three basidiomycete fungi Pleurotus ostreatus, Rigidoporus lignosus, and Trametes trogii to relate their different catalytic capacities to their structural properties. Spectroscopic absorption features and EPR spectra at various pH values of the five enzymes are very similar and typical of the blue oxidases. The analysis of the dependence of kinetic parameters on pH suggested that a histidine residue is involved in the binding of nonphenolic substrates, whereas both a histidine and an acidic residue may be involved in the binding of phenolic compounds. His and an Asp residue are indeed found at the bottom of a cavity which may be regarded as a suitable substrate channel for approaching to type 1 copper in the 3D homology models of the two laccases from Pleuorotus ostreatus (POXC and POXA1b) whose sequences are known.


Enzyme and Microbial Technology | 1994

A new enzyme immobilization procedure using copper alginate gel: Application to a fungal phenol oxidase

Gianna Palmieri; Paola Giardina; Bianca Desiderio; Liberato Marzullo; Marta Giamberini; Giovanni Sannia

A new procedure was developed for enzyme immobilization by entrapment in copper alginate gel. The mechanical properties of the copper alginate gel were characterized and compared with those of the most widely used calcium alginate. The system was applied to the immobilization of a fungal phenol oxidase. Optimal conditions for enzyme immobilization were set up: the system immobilized 85% of the enzyme, and the remaining 15% was recovered in the aqueous immobilization medium. The stability and activity of the immobilized enzyme were studied. After immobilization, the enzyme was active in a wider pH range, the temperature of its optimal activity was shifted to lower values, and the possibility of storage at 4 degrees C was greatly improved. The immobilized enzyme generally increased the rate of oxidation of various substrates. The results indicate a potential use of this system for the construction of bioreactors to be used in the detoxification of polluted waste waters.


Biotechnology Progress | 2005

Laccase-mediated remazol brilliant blue R decolorization in a fixed-bed bioreactor

Gianna Palmieri; Paola Giardina; Giovanni Sannia

A crude laccase mixture preparation from Pleurotus ostreatus cultures supplemented with copper and ferulic acid was used to decolorize the anthraquinonic dye Remazol Brilliant Blue R (RBBR). Performance of this enzymatic system was tested, and a maximum of 70% decolorization was achievable under optimal conditions. The crude preparation was immobilized by entrapment in copper alginate beads attaining 65% yield of laccase activity. Stability of the immobilized laccases was remarkably increased in comparison with that of the free enzyme preparation. Efficiency of the immobilized system was evaluated during stepwise dye additions in batch operations. Under the best conditions, 70% RBBR decolorization was achieved even after 20 cycles, although decolorization time exponentially increased after the 10th cycle. Different fixed‐bed bioreactors were prepared and analyzed in continuous decolorization processes. The best performance was obtained by decreasing the amount of enzyme loaded and by improving laccase retention using chitosan‐coated alginate beads.


PLOS ONE | 2011

Acylpeptide Hydrolase Inhibition as Targeted Strategy to Induce Proteasomal Down-Regulation

Gianna Palmieri; Paolo Bergamo; Alberto Luini; Menotti Ruvo; Marta Gogliettino; Emma Langella; Michele Saviano; Ramanath N. Hegde; Annamaria Sandomenico; Mosè Rossi

Acylpeptide hydrolase (APEH), one of the four members of the prolyl oligopeptidase class, catalyses the removal of N-acylated amino acids from acetylated peptides and it has been postulated to play a key role in protein degradation machinery. Disruption of protein turnover has been established as an effective strategy to down-regulate the ubiquitin-proteasome system (UPS) and as a promising approach in anticancer therapy. Here, we illustrate a new pathway modulating UPS and proteasome activity through inhibition of APEH. To find novel molecules able to down-regulate APEH activity, we screened a set of synthetic peptides, reproducing the reactive-site loop of a known archaeal inhibitor of APEH (SsCEI), and the conjugated linoleic acid (CLA) isomers. A 12-mer SsCEI peptide and the trans10-cis12 isomer of CLA, were identified as specific APEH inhibitors and their effects on cell-based assays were paralleled by a dose-dependent reduction of proteasome activity and the activation of the pro-apoptotic caspase cascade. Moreover, cell treatment with the individual compounds increased the cytoplasm levels of several classic hallmarks of proteasome inhibition, such as NFkappaB, p21, and misfolded or polyubiquitinylated proteins, and additive effects were observed in cells exposed to a combination of both inhibitors without any cytotoxicity. Remarkably, transfection of human bronchial epithelial cells with APEH siRNA, promoted a marked accumulation of a mutant of the cystic fibrosis transmembrane conductance regulator (CFTR), herein used as a model of misfolded protein typically degraded by UPS. Finally, molecular modeling studies, to gain insights into the APEH inhibition by the trans10-cis12 CLA isomer, were performed. Our study supports a previously unrecognized role of APEH as a negative effector of proteasome activity by an unknown mechanism and opens new perspectives for the development of strategies aimed at modulation of cancer progression.


Molecular Nutrition & Food Research | 2011

Conjugated linoleic acid protects against gliadin-induced depletion of intestinal defenses.

Paolo Bergamo; Marta Gogliettino; Gianna Palmieri; Ennio Cocca; Francesco Maurano; Rosita Stefanile; Marco Balestrieri; Giuseppe Mazzarella; Chella S. David; Mauro Rossi

SCOPE The involvement of oxidative stress in gluten-induced toxicity has been evidenced in vitro and in clinical studies but has never been examined in vivo. We recently demonstrated the protective activity of conjugated linoleic acid (CLA), which functions by the activation of nuclear factor erythroid 2-related factor2 (Nrf2), a key transcription factor for the synthesis of antioxidant and detoxifying enzymes (phase 2). Here, we evaluate the involvement of nuclear factor erythroid 2-related factor2 in gliadin-mediated toxicity in human Caco-2 intestinal cells and in gliadin-sensitive human leukocyte antigen-DQ8 transgenic mice (DQ8) and the protective activity of CLA. METHODS AND RESULTS Gliadin effects in differentiated Caco-2 cells and in DQ8 mice, fed with a gliadin-containing diet with or without CLA supplementation, were evaluated by combining enzymatic, immunochemical, immunohistochemical, and quantitative real-time PCR (qRT-PCR) assays. Gliadin toxicity was accompanied by downregulation of phase 2 and elevates proteasome-acylpeptide hydrolase activities in vitro and in vivo. Notably, gliadin was unable to generate severe oxidative stress extent or pathological consequences in DQ8 mice intestine comparable to those found in celiac patients and the alterations produced were hampered by CLA. CONCLUSION The beneficial effects of CLA against the depletion of crucial intestinal cytoprotective defenses indicates a novel nutritional approach for the treatment of intestinal disease associated with altered redox homeostasis.


Journal of Proteome Research | 2013

Surface-exposed glycoproteins of hyperthermophilic Sulfolobus solfataricus P2 show a common N-glycosylation profile.

Gianna Palmieri; Marco Balestrieri; Jasna Peter-Katalinić; Gottfried Pohlentz; Mosè Rossi; Immacolata Fiume; Gabriella Pocsfalvi

Cell surface proteins of hyperthermophilic Archaea actively participate in intercellular communication, cellular uptake, and energy conversion to sustain survival strategies in extreme habitats. Surface (S)-layer glycoproteins, the major component of the S-layers in many archaeal species and the best-characterized prokaryotic glycoproteins, were shown to have a large structural diversity in their glycan compositions. In spite of this, knowledge on glycosylation of proteins other than S-layer proteins in Archaea is quite limited. Here, the N-glycosylation pattern of cell-surface-exposed proteins of Sulfolobus solfataricus P2 were analyzed by lectin affinity purification, HPAEC-PAD, and multiple mass spectrometry-based techniques. Detailed analysis of SSO1273, one of the most abundant ABC transporters present in the cell surface fraction of S. solfataricus, revealed a novel glycan structure composed of a branched sulfated heptasaccharide, Hex4(GlcNAc)2 plus sulfoquinovose where Hex is d-mannose and d-glucose. Having one monosaccharide unit more than the glycan of the S-layer glycoprotein of S. acidocaldarius, this is the most complex archaeal glycan structure known today. SSO1273 protein is heavily glycosylated and all 20 theoretical N-X-S/T (where X is any amino acid except proline) consensus sequence sites were confirmed. Remarkably, we show that several other proteins in the surface fraction of S. solfataricus are N-glycosylated by the same sulfated oligosaccharide and we identified 56 N-glycosylation sites in this subproteome.


Molecular & Cellular Proteomics | 2009

Outside the Unusual Cell Wall of the Hyperthermophilic Archaeon Aeropyrum pernix K1

Gianna Palmieri; Raffaele Cannio; Immacolata Fiume; Mosè Rossi; Gabriella Pocsfalvi

In contrast to the extensively studied eukaryal and bacterial protein secretion systems, comparatively less is known about how and which proteins cross the archaeal cell membrane. To identify secreted proteins of the hyperthermophilic archaeon Aeropyrum pernix K1 we used a proteomics approach to analyze the extracellular and cell surface protein fractions. The experimentally obtained data comprising 107 proteins were compared with the in silico predicted secretome. Because of the lack of signal peptide and cellular localization prediction tools specific for archaeal species, programs trained on eukaryotic and/or Gram-positive and Gram-negative bacterial signal peptide data sets were used. PSortB Gram-negative and Gram-positive analysis predicted 21 (1.2% of total ORFs) and 24 (1.4% of total ORFs) secreted proteins, respectively, from the entire A. pernix K1 proteome, 12 of which were experimentally identified in this work. Six additional proteins were predicted to follow non-classical secretion mechanisms using SecP algorithms. According to at least one of the two PSortB predictions, 48 proteins identified in the two fractions possess an unknown localization site. In addition, more than half of the proteins do not contain signal peptides recognized by current prediction programs. This suggests that known mechanisms only partly describe archaeal protein secretion. The most striking characteristic of the secretome was the high number of transport-related proteins identified from the ATP-binding cassette (ABC), tripartite ATP-independent periplasmic, ATPase, small conductance mechanosensitive ion channel (MscS), and dicarboxylate amino acid-cation symporter transporter families. In particular, identification of 21 solute-binding receptors of the ABC superfamily of the 24 predicted in silico confirms that ABC-mediated transport represents the most frequent strategy adopted by A. pernix for solute translocation across the cell membrane.


FEBS Journal | 2014

A novel class of bifunctional acylpeptide hydrolases – potential role in the antioxidant defense systems of the Antarctic fish Trematomus bernacchii

Marta Gogliettino; Alessia Riccio; Marco Balestrieri; Ennio Cocca; Teresa M. D'Arco; Clara Tesoro; Mosè Rossi; Gianna Palmieri

Oxidative challenge is an important factor affecting the adaptive strategies of Antarctic fish, but data on antioxidant defenses in these organisms remain scarce. In this context, a key role could be played by acylpeptide hydrolase (APEH), which was recently hypothesized to participate in the degradation of oxidized and cytotoxic proteins, although its physiological function is still not fully clarified. This study represents the first report on piscine members of this enzyme family, specifically from the Antarctic teleost Trematomus bernacchii. The cDNAs corresponding to two apeh genes were isolated, and the respective proteins were functionally and structurally characterized with the aim of understanding the biological significance of these proteases in Antarctic fish. Both APEH isoforms (APEH‐1Tb and APEH‐2Tb) showed distinct temperature‐kinetic behavior, with significant differences in the Km values. Moreover, beside the typical acylpeptide hydrolase activity, APEH‐2Tb showed remarkable oxidized protein endohydrolase activity towards oxidized BSA, suggesting that this isoform could play a homeostatic role in removing oxidatively damaged proteins, sustaining the antioxidant defense systems. The 3D structures of both APEHs were predicted, and a possible relationship was found between the substrate specificity/affinity and the marked changes in the number of charged residues and hydrophobicity properties surrounding their catalytic sites. Our results demonstrated the occurrence of two APEH isoforms in T. bernacchii, belonging to different phylogenetic clusters, identified for the first time, and showing distinct molecular and temperature–kinetic behaviors. In addition, we suggest that the members of the new cluster ‘APEH‐2’ could participate in reactive oxygen species detoxification as phase 3 antioxidant enzymes, enhancing the protein degradation machinery.

Collaboration


Dive into the Gianna Palmieri's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mosè Rossi

University of St Andrews

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ennio Cocca

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Giovanni Sannia

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alessia Riccio

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paolo Bergamo

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge