Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gianpaolo Balsamo is active.

Publication


Featured researches published by Gianpaolo Balsamo.


Journal of Hydrometeorology | 2009

A Revised Hydrology for the ECMWF Model: Verification from Field Site to Terrestrial Water Storage and Impact in the Integrated Forecast System

Gianpaolo Balsamo; Anton Beljaars; Klaus Scipal; Pedro Viterbo; Bart van den Hurk; Martin Hirschi; Alan K. Betts

Abstract The Tiled ECMWF Scheme for Surface Exchanges over Land (TESSEL) is used operationally in the Integrated Forecast System (IFS) for describing the evolution of soil, vegetation, and snow over the continents at diverse spatial resolutions. A revised land surface hydrology (H-TESSEL) is introduced in the ECMWF operational model to address shortcomings of the land surface scheme, specifically the lack of surface runoff and the choice of a global uniform soil texture. New infiltration and runoff schemes are introduced with a dependency on the soil texture and standard deviation of orography. A set of experiments in stand-alone mode is used to assess the improved prediction of soil moisture at the local scale against field site observations. Comparison with basin-scale water balance (BSWB) and Global Runoff Data Centre (GRDC) datasets indicates a consistently larger dynamical range of land water mass over large continental areas and an improved prediction of river runoff, while the effect on atmospheric...


Water Resources Research | 2014

The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA-Interim reanalysis data

Graham P. Weedon; Gianpaolo Balsamo; Nicolas Bellouin; Sandra Gomes; M. J. Best; Pedro Viterbo

The WFDEI meteorological forcing data set has been generated using the same methodology as the widely used WATCH Forcing Data (WFD) by making use of the ERA-Interim reanalysis data. We discuss the specifics of how changes in the reanalysis and processing have led to improvement over the WFD. We attribute improvements in precipitation and wind speed to the latest reanalysis basis data and improved downward shortwave fluxes to the changes in the aerosol corrections. Covering 1979–2012, the WFDEI will allow more thorough comparisons of hydrological and Earth System model outputs with hydrologically and phenologically relevant satellite products than using the WFD.


Journal of Hydrometeorology | 2011

The Second Phase of the Global Land–Atmosphere Coupling Experiment: Soil Moisture Contributions to Subseasonal Forecast Skill

Randal D. Koster; S. P. P. Mahanama; Tomohito J. Yamada; Gianpaolo Balsamo; Aaron A. Berg; M. Boisserie; Paul A. Dirmeyer; Francisco J. Doblas-Reyes; G. B. Drewitt; C. T. Gordon; Z. Guo; Jee-Hoon Jeong; W.-S. Lee; Z. Li; Lifeng Luo; Sergey Malyshev; William J. Merryfield; Sonia I. Seneviratne; Tanja Stanelle; B. J. J. M. van den Hurk; F. Vitart; Eric F. Wood

AbstractThe second phase of the Global Land–Atmosphere Coupling Experiment (GLACE-2) is a multi-institutional numerical modeling experiment focused on quantifying, for boreal summer, the subseasonal (out to two months) forecast skill for precipitation and air temperature that can be derived from the realistic initialization of land surface states, notably soil moisture. An overview of the experiment and model behavior at the global scale is described here, along with a determination and characterization of multimodel “consensus” skill. The models show modest but significant skill in predicting air temperatures, especially where the rain gauge network is dense. Given that precipitation is the chief driver of soil moisture, and thereby assuming that rain gauge density is a reasonable proxy for the adequacy of the observational network contributing to soil moisture initialization, this result indeed highlights the potential contribution of enhanced observations to prediction. Land-derived precipitation forec...


Journal of Hydrometeorology | 2010

An Improved Snow Scheme for the ECMWF Land Surface Model: Description and Offline Validation

Emanuel Dutra; Gianpaolo Balsamo; Pedro Viterbo; Pedro M. A. Miranda; Anton Beljaars; Christoph Schär; Kelly Elder

A new snow scheme for the European Centre for Medium-Range Weather Forecasts (ECMWF) land surface model has been tested and validated. The scheme includes a new parameterization of snow density, incorporating a liquid water reservoir, and revised formulations for the subgrid snow cover fraction and snow albedo. Offline validation (covering a wide range of spatial and temporal scales) includes simulations for several observation sites from the Snow Models Intercomparison Project-2 (SnowMIP2) and global simulations driven by the meteorological forcing from the Global Soil Wetness Project-2 (GSWP2) and by ECMWF Re-Analysis ERA-Interim. The new scheme reduces the end of season ablation biases from 10 to 2 days in open areas and from 21 to 13 days in forest areas. Global GSWP2 results are compared against basinscale runoff and terrestrial water storage. The new snow density parameterization increases the snow thermal insulation, reducing soil freezing and leading to an improved hydrological cycle. Simulated snow cover fraction is compared against NOAA/National Environmental Satellite, Data, and Information Service (NESDIS) with a reduction of the negative bias of snow-covered area of the original snow scheme. The original snow scheme had a systematic negative bias in surface albedo when compared against Moderate Resolution Imaging Spectroradiometer (MODIS) remote sensing data. The new scheme reduces the albedo bias, consequently reducing the spatial- and time-averaged surface net shortwave radiation bias by 5.2 W m 22 in 14% of the Northern Hemisphere land. The new snow scheme described in this paper was introduced in the ECMWF operational forecast system in September 2009 (cycle 35R3).


Bulletin of the American Meteorological Society | 2009

The AMMA Land Surface Model Intercomparison Project (ALMIP)

Aaron Boone; Françoise Guichard; Patricia de Rosnay; Gianpaolo Balsamo; Anton Beljaars; Franck Chopin; Tristan Orgeval; Jan Polcher; Christine Delire; Agnès Ducharne; Simon Gascoin; Manuela Grippa; Lionel Jarlan; Laurent Kergoat; Eric Mougin; Yeugeniy M. Gusev; Olga N. Nasonova; Phil P. Harris; Christopher M. Taylor; Anette Nørgaard; Inge Sandholt; Catherine Ottlé; Isabelle Poccard-Leclercq; Stephane Saux-Picart; Yongkang Xue

The rainfall over West Africa has been characterized by extreme variability in the last half-century, with prolonged droughts resulting in humanitarian crises. There is, therefore, an urgent need to better understand and predict the West African monsoon (WAM), because social stability in this region depends to a large degree on water resources. The economies are primarily agrarian, and there are issues related to food security and health. In particular, there is a need to better understand land–atmosphere and hydrological processes over West Africa because of their potential feedbacks with the WAM. This is being addressed through a multiscale modeling approach using an ensemble of land surface models that rely on dedicated satellite-based forcing and land surface parameter products, and data from the African Multidisciplinary Monsoon Analysis (AMMA) observational field campaigns. The AMMA land surface model (LSM) Intercomparison Project (ALMIP) offline, multimodel simulations comprise the equivalent of a multimodel reanalysis product. They currently represent the best estimate of the land surface processes over West Africa from 2004 to 2007. An overview of model intercomparison and evaluation is presented. The far-reaching goal of this effort is to obtain better understanding and prediction of the WAM and the feedbacks with the surface. This can be used to improve water management and agricultural practices over this region.


Journal of Geophysical Research | 2009

AMMA Land Surface Model Intercomparison Experiment coupled to the Community Microwave Emission Model: ALMIP-MEM

P. de Rosnay; Matthias Drusch; Aaron Boone; Gianpaolo Balsamo; Phil P. Harris; Yann Kerr; Thierry Pellarin; Jan Polcher; Jean-Pierre Wigneron

This paper presents the African Monsoon Multidisciplinary Analysis (AMMA) Land Surface Models Intercomparison Project (ALMIP) for Microwave Emission Models (ALMIP-MEM). ALMIP-MEM comprises an ensemble of simulations of C-band brightness temperatures over West Africa for 2006. Simulations have been performed for an incidence angle of 55°, and results are evaluated against C-band satellite data from the Advanced Microwave Scanning Radiometer on Earth Observing System (AMSR-E). The ensemble encompasses 96 simulations, for 8 Land Surface Models (LSMs) coupled to 12 configurations of the Community Microwave Emission Model (CMEM). CMEM has a modular structure which permits combination of several parameterizations with different vegetation opacity and soil dielectric models. ALMIP-MEM provides the first intercomparison of state-of-the-art land surface and microwave emission models at regional scale. Quantitative estimates of the relative importance of land surface modeling and radiative transfer modeling for the monitoring of low-frequency passive microwave emission on land surfaces are obtained. This is of high interest for the various users of coupled land surface microwave emission models. Results show that both LSMs and microwave model components strongly influence the simulated top of atmosphere (TOA) brightness temperatures. For most of the LSMs, the Kirdyashev opacity model is the most suitable to simulate TOA brightness temperature in best agreement with the AMSR-E data. When this best microwave modeling configuration is used, all the LSMs are able to reproduce the main temporal and spatial variability of measured brightness temperature. Averaged among the LSMs, correlation is 0.67 and averaged normalized standard deviation is 0.98.


Journal of Hydrometeorology | 2013

Skill and global trend analysis of soil moisture from reanalysis and microwave remote sensing

Clément Albergel; Wouter Dorigo; Rolf H. Reichle; Gianpaolo Balsamo; P. de Rosnay; J. Muñoz-Sabater; I Isaksen; R.A.M. de Jeu; W. Wagner

AbstractIn situ soil moisture measurements from 2007 to 2010 for 196 stations from five networks across the world (United States, France, Spain, China, and Australia) are used to determine the reliability of three soil moisture products: (i) a revised version of the ECMWF Interim Re-Analysis (ERA-Interim; ERA-Land); (ii) a revised version of the Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalysis from NASA (MERRA-Land); and (iii) a new, microwave-based multisatellite surface soil moisture dataset (SM-MW). Evaluation of the time series and anomalies from a moving monthly mean shows a good performance of the three products in capturing the annual cycle of surface soil moisture and its short-term variability. On average, correlations (95% confidence interval) are 0.66 (±0.038), 0.69 (±0.038), and 0.60 (±0.061) for ERA-Land, MERRA-Land, and SM-MW. The two reanalysis products also capture the root-zone soil moisture well; on average, correlations are 0.68 (±0.035) and 0.73 (±0.03...


Bulletin of the American Meteorological Society | 2014

Toward a Consistent Reanalysis of the Climate System

Dick Dee; Magdalena A. Balmaseda; Gianpaolo Balsamo; R. Engelen; A. J. Simmons; Jean-Noël Thépaut

This article reviews past and current reanalysis activities at the European Centre for Medium-Range Weather Forecasts (ECMWF) and describes plans for developing future reanalyses of the coupled climate system. Global reanalyses of the atmosphere, ocean, land surface, and atmospheric composition have played an important role in improving and extending the capabilities of ECMWFs operational forecasting systems. The potential role of reanalysis in support of climate change services in Europe is driving several interesting new developments. These include the production of reanalyses that span a century or more and the implementation of a coupled data assimilation capability suitable for climate reanalysis. Although based largely on ECMWFs achievements, capabilities, and plans, the article serves more generally to provide a review of pertinent issues affecting past and current reanalyses and a discussion of the major challenges in moving to more fully coupled systems.


Journal of Hydrometeorology | 2012

Soil Moisture Analyses at ECMWF: Evaluation Using Global Ground-Based In Situ Observations

Clément Albergel; P. de Rosnay; Gianpaolo Balsamo; Lars Isaksen; J. Muñoz-Sabater

AbstractIn situ soil moisture from 117 stations across the world and under different biome and climate conditions are used to evaluate two soil moisture products from the European Centre for Medium-Range Weather Forecasts (ECMWF)—namely, the operational analysis and the interim reanalysis [ECMWF Re-Analysis Interim (ERA-Interim)]. ECMWF’s operational Integrated Forecasting System (IFS) is based on a continuous effort to improve the analysis and modeling systems, resulting in frequent updates (a few times a year). The ERA-Interim reanalysis is produced by a fixed IFS version (for the main component of the atmospheric model and data assimilation). It has the advantage of being consistent over the whole period from 1979 onward and by design, reanalysis products are more suitable than their operational counterparts for use in climate studies. Although the two analyses show good skills in capturing surface soil moisture variability, they tend to overestimate soil moisture, particularly for dry land. Over the 2...


Bulletin of the American Meteorological Society | 2010

The Concordiasi Project in Antarctica

Florence Rabier; Aurélie Bouchard; Eric Brun; Alexis Doerenbecher; Stéphanie Guedj; Vincent Guidard; Fatima Karbou; V.-H. Peuch; Laaziz El Amraoui; Dominique Puech; Christophe Genthon; Ghislain Picard; Michael Town; Albert Hertzog; F. Vial; Philippe Cocquerez; Stephen A. Cohn; Terry Hock; Jack Fox; Hal Cole; David B. Parsons; Jordan G. Powers; Keith Romberg; Joseph VanAndel; Terry Deshler; J. L. Mercer; Jennifer S. Haase; Linnea M. Avallone; Lars Eriks Kalnajs; C. Roberto Mechoso

The Concordiasi project is making innovative observations of the atmosphere above Antarctica. The most important goals of the Concordiasi are as follows: To enhance the accuracy of weather prediction and climate records in Antarctica through the assimilation of in situ and satellite data, with an emphasis on data provided by hyperspectral infrared sounders. The focus is on clouds, precipitation, and the mass budget of the ice sheets. The improvements in dynamical model analyses and forecasts will be used in chemical-transport models that describe the links between the polar vortex dynamics and ozone depletion, and to advance the under understanding of the Earth system by examining the interactions between Antarctica and lower latitudes. To improve our understanding of microphysical and dynamical processes controlling the polar ozone, by providing the first quasi-Lagrangian observations of stratospheric ozone and particles, in addition to an improved characterization of the 3D polar vortex dynamics. Techni...

Collaboration


Dive into the Gianpaolo Balsamo's collaboration.

Top Co-Authors

Avatar

Emanuel Dutra

European Centre for Medium-Range Weather Forecasts

View shared research outputs
Top Co-Authors

Avatar

Anton Beljaars

European Centre for Medium-Range Weather Forecasts

View shared research outputs
Top Co-Authors

Avatar

S. Boussetta

European Centre for Medium-Range Weather Forecasts

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Clément Albergel

European Centre for Medium-Range Weather Forecasts

View shared research outputs
Top Co-Authors

Avatar

P. de Rosnay

European Centre for Medium-Range Weather Forecasts

View shared research outputs
Top Co-Authors

Avatar

F. Vitart

European Centre for Medium-Range Weather Forecasts

View shared research outputs
Top Co-Authors

Avatar

Florian Pappenberger

European Centre for Medium-Range Weather Forecasts

View shared research outputs
Top Co-Authors

Avatar

J. Muñoz-Sabater

European Centre for Medium-Range Weather Forecasts

View shared research outputs
Top Co-Authors

Avatar

Patricia de Rosnay

European Centre for Medium-Range Weather Forecasts

View shared research outputs
Researchain Logo
Decentralizing Knowledge