Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patricia de Rosnay is active.

Publication


Featured researches published by Patricia de Rosnay.


Bulletin of the American Meteorological Society | 2001

Modeling root water uptake in hydrological and climate models

Reinder A. Feddes; Holger Hoff; Michael Bruen; Todd E. Dawson; Patricia de Rosnay; Paul A. Dirmeyer; Robert B. Jackson; P. Kabat; Axel Kleidon; Allan Lilly; A. J. Pitman

Abstract From 30 September to 2 October 1999 a workshop was held in Gif–sur–Yvette, France, with the central objective to develop a research strategy for the next 3–5 years, aiming at a systematic description of root functioning, rooting depth, and root distribution for modeling root water uptake from local and regional to global scales. The goal was to link more closely the weather prediction and climate and hydrological models with ecological and plant physiological information in order to improve the understanding of the impact that root functioning has on the hydrological cycle at various scales. The major outcome of the workshop was a number of recommendations, detailed at the end of this paper, on root water uptake parameterization and modeling and on collection of root and soil hydraulic data.


Meteorologische Zeitschrift | 2013

The ASCAT Soil Moisture Product: A Review of its Specifications, Validation Results, and Emerging Applications

W. Wagner; Sebastian Hahn; Richard Kidd; Thomas Melzer; Zoltan Bartalis; Stefan Hasenauer; Julia Figa-Saldana; Patricia de Rosnay; Alexander Jann; Stefan Schneider; J. Komma; Gerhard Kubu; Katharina Brugger; Christoph Aubrecht; Johann Züger; Ute Gangkofner; Stefan Kienberger; Luca Brocca; Yong Wang; Günter Blöschl; Josef Eitzinger; Kla Steinnocher

Many physical, chemical and biological processes taking place at the land surface are strongly influenced by the amount of water stored within the upper soil layers. Therefore, many scientific disciplines require soil moisture observations for developing, evaluating and improving their models. One of these disciplines is meteorology where soil moisture is important due to its control on the exchange of heat and water between the soil and the lower atmosphere. Soil moisture observations may thus help to improve the forecasts of air temperature, air humidity and precipitation. However, until recently, soil moisture observations had only been available over a limited number of regional soil moisture networks. This has hampered scientific progress as regards the characterisation of land surface processes not just in meteorology but many other scientific disciplines as well. Fortunately, in recent years, satellite soil moisture data have increasingly become available. One of the freely available global soil moisture data sets is derived from the backscatter measurements acquired by the Advanced Scatterometer (ASCAT) that is a C-band active microwave remote sensing instrument flown on board of the Meteorological Operational (METOP) satellite series. ASCAT was designed to observe wind speed and direction over the oceans and was initially not foreseen for monitoring soil moisture over land. Yet, as argued in this review paper, the characteristics of the ASCAT instrument, most importantly its wavelength (5.7 cm), its high radiometric accuracy, and its multiple-viewing capabilities make it an attractive sensor for measuring soil moisture. Moreover, given the operational status of ASCAT, and its promising long-term prospects, many geoscientific applications might benefit from using ASCAT soil moisture data. Nonetheless, the ASCAT soil moisture product is relatively complex, requiring a good understanding of its properties before it can be successfully used in applications. To provide a comprehensive overview of themajor characteristics and caveats of the ASCATsoil moisture product, this paper describes the ASCAT instrument and the soil moisture processor and near-real-time distribution service implemented by the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT).A review of themost recent validation studies shows that the quality of ASCAT soil moisture product is – with the exception of arid environments –comparable to, and over some regions (e.g. Europe) even better than currently available soil moisture data derived from passive microwave sensors. Further, a review of applications studies shows that the use of the ASCAT soil moisture product is particularly advanced in the fields of numerical weather prediction and hydrologic modelling. But also in other application areas such as yield monitoring, epidemiologic modelling, or societal risks assessment some first progress can be noted. Considering the generally positive evaluation results, it is expected that the ASCAT soil moisture product will increasingly be used by a growing number of rather diverse land applications.


Monthly Weather Review | 2000

Simulations of a Boreal Grassland Hydrology at Valdai, Russia: PILPS Phase 2(d)

C. Adam Schlosser; Andrew G. Slater; Alan Robock; A. J. Pitman; Nina A. Speranskaya; K. L. Mitchell; Aaron Boone; Harald Braden; Fei Chen; Peter M. Cox; Patricia de Rosnay; C. E. Desborough; Robert E. Dickenson; Yongjiu Dai; Qingyun Duan; Jared K. Entin; Pierre Etchevers; Yeugeniy M. Gusev; Florence Habets; Jinwon Kim; Victor Koren; Eva Kowalczyk; Olga N. Nasonova; J. Noilhan; John C. Schaake; Andrey B. Shmakin; Tatiana G. Smirnova; Peter J. Wetzel; Yongkang Xue; Zong-Liang Yang

The Project for the Intercomparison of Land-Surface Parameterization Schemes (PILPS) aims to improve understanding and modeling of land surface processes. PILPS phase 2(d) uses a set of meteorological and hydrological data spanning 18 yr (1966‐83) from a grassland catchment at the Valdai water-balance research site in Russia. A suite of stand-alone simulations is performed by 21 land surface schemes (LSSs) to explore the LSSs’ sensitivity to downward longwave radiative forcing, timescales of simulated hydrologic variability, and biases resulting from single-year simulations that use recursive spinup. These simulations are the first in PILPS to investigate the performance of LSSs at a site with a well-defined seasonal snow cover and frozen soil. Considerable model scatter for the control simulations exists. However, nearly all the LSS scatter in simulated root-zone soil moisture is contained within the spatial variability observed inside the catchment. In addition, all models show a considerable sensitivity to longwave forcing for the simulation of the snowpack, which during the spring melt affects runoff, meltwater infiltration, and subsequent evapotranspiration. A greater sensitivity of the ablation, compared to the accumulation, of the winter snowpack to the choice of snow parameterization is found. Sensitivity simulations starting at prescribed conditions with no spinup demonstrate that the treatment of frozen soil (moisture) processes can affect the long-term variability of the models. The single-year recursive runs show large biases, compared to the corresponding year of the control run, that can persist through the entire year and underscore the importance of performing multiyear simulations.


Journal of Hydrometeorology | 2003

Effects of frozen soil on soil temperature, spring infiltration, and runoff: results from the PILPS 2(d) experiment at Valdai, Russia

Lifeng Luo; Alan Robock; Konstantin Y. V Innikov; C. Adam Schlosser; Andrew G. Slater; Aaron Boone; Harald Braden; Peter M. Cox; Patricia de Rosnay; Robert E. Dickinson; Yongjiu Dai; Qingyun Duan; Pierre Etchevers; A. Henderson-Sellers; N. Gedney; Yevgeniy M. Gusev; Florence Habets; Jinwon Kim; Eva Kowalczyk; Kenneth E. Mitchell; Olga N. Nasonova; J. Noilhan; A. J. Pitman; John C. Schaake; Andrey B. Shmakin; Tatiana G. Smirnova; Peter J. Wetzel; Yongkang Xue; Zong-Liang Yang; Qingcun Zeng

The Project for Intercomparison of Land-Surface Parameterization Schemes phase 2(d) experiment at Valdai, Russia, offers a unique opportunity to evaluate land surface schemes, especially snow and frozen soil parameterizations. Here, the ability of the 21 schemes that participated in the experiment to correctly simulate the thermal and hydrological properties of the soil on several different timescales was examined. Using observed vertical profiles of soil temperature and soil moisture, the impact of frozen soil schemes in the land surface models on the soil temperature and soil moisture simulations was evaluated. It was found that when soil-water freezing is explicitly included in a model, it improves the simulation of soil temperature and its variability at seasonal and interannual scales. Although change of thermal conductivity of the soil also affects soil temperature simulation, this effect is rather weak. The impact of frozen soil on soil moisture is inconclusive in this experiment due to the particular climate at Valdai, where the top 1mo fsoil is very close to saturation during winter and the range for soil moisture changes at the time of snowmelt is very limited. The results also imply that inclusion of explicit snow processes in the models would contribute to substantially improved simulations. More sophisticated snow models based on snow physics tend to produce better snow simulations, especially of snow ablation. Hysteresis of snowcover fraction as a function of snow depth is observed at the catchment but not in any of the models.


Bulletin of the American Meteorological Society | 2009

The AMMA Land Surface Model Intercomparison Project (ALMIP)

Aaron Boone; Françoise Guichard; Patricia de Rosnay; Gianpaolo Balsamo; Anton Beljaars; Franck Chopin; Tristan Orgeval; Jan Polcher; Christine Delire; Agnès Ducharne; Simon Gascoin; Manuela Grippa; Lionel Jarlan; Laurent Kergoat; Eric Mougin; Yeugeniy M. Gusev; Olga N. Nasonova; Phil P. Harris; Christopher M. Taylor; Anette Nørgaard; Inge Sandholt; Catherine Ottlé; Isabelle Poccard-Leclercq; Stephane Saux-Picart; Yongkang Xue

The rainfall over West Africa has been characterized by extreme variability in the last half-century, with prolonged droughts resulting in humanitarian crises. There is, therefore, an urgent need to better understand and predict the West African monsoon (WAM), because social stability in this region depends to a large degree on water resources. The economies are primarily agrarian, and there are issues related to food security and health. In particular, there is a need to better understand land–atmosphere and hydrological processes over West Africa because of their potential feedbacks with the WAM. This is being addressed through a multiscale modeling approach using an ensemble of land surface models that rely on dedicated satellite-based forcing and land surface parameter products, and data from the African Multidisciplinary Monsoon Analysis (AMMA) observational field campaigns. The AMMA land surface model (LSM) Intercomparison Project (ALMIP) offline, multimodel simulations comprise the equivalent of a multimodel reanalysis product. They currently represent the best estimate of the land surface processes over West Africa from 2004 to 2007. An overview of model intercomparison and evaluation is presented. The far-reaching goal of this effort is to obtain better understanding and prediction of the WAM and the feedbacks with the surface. This can be used to improve water management and agricultural practices over this region.


Journal of Hydrometeorology | 2007

From Near-Surface to Root-Zone Soil Moisture Using Different Assimilation Techniques

Joaquín Muñoz Sabater; Lionel Jarlan; Jean-Christophe Calvet; François Bouyssel; Patricia de Rosnay

Abstract Root-zone soil moisture constitutes an important variable for hydrological and weather forecast models. Microwave radiometers like the L-band instrument on board the European Space Agency’s (ESA) future Soil Moisture and Ocean Salinity (SMOS) mission are being designed to provide estimates of near-surface soil moisture (0–5 cm). This quantity is physically related to root-zone soil moisture through diffusion processes, and both surface and root-zone soil layers are commonly simulated by land surface models (LSMs). Observed time series of surface soil moisture may be used to analyze the root-zone soil moisture using data assimilation systems. In this paper, various assimilation techniques derived from Kalman filters (KFs) and variational methods (VAR) are implemented and tested. The objective is to correct the modeled root-zone soil moisture deficiencies of the newest version of the Interaction between Soil, Biosphere, and Atmosphere scheme (ISBA) LSM, using the observations of the surface soil mo...


Journal of Hydrometeorology | 2009

Comparing ERA-40-Based L-Band Brightness Temperatures with Skylab Observations: A Calibration/Validation Study Using the Community Microwave Emission Model

Matthias Drusch; Thomas R. H. Holmes; Patricia de Rosnay; Gianpaolo Balsamo

Abstract The Community Microwave Emission Model (CMEM) has been used to compute global L-band brightness temperatures at the top of the atmosphere. The input data comprise surface fields from the 40-yr ECMWF Re-Analysis (ERA-40), vegetation data from the ECOCLIMAP dataset, and the Food and Agriculture Organization’s (FAO) soil database. Modeled brightness temperatures have been compared against (historic) observations from the S-194 passive microwave radiometer onboard the Skylab space station. Different parameterizations for surface roughness and the vegetation optical depth have been used to calibrate the model. The best results have been obtained for rather simple approaches proposed by Wigneron et al. and Kirdyashev et al. The rms errors after calibration are 10.7 and 9.8 K for North and South America, respectively. Comparing the ERA-40 soil moisture product against the corresponding in situ observations suggests that the uncertainty in the modeled soil moisture is the predominant contributor to these...


Surveys in Geophysics | 2014

Initialisation of Land Surface Variables for Numerical Weather Prediction

Patricia de Rosnay; Gianpaolo Balsamo; Clément Albergel; J. Muñoz-Sabater; Lars Isaksen

Land surface processes and their initialisation are of crucial importance for Numerical Weather Prediction (NWP). Current land data assimilation systems used to initialise NWP models include snow depth analysis, soil moisture analysis, soil temperature and snow temperature analysis. This paper gives a review of different approaches used in NWP to initialise land surface variables. It discusses the observation availability and quality, and it addresses the combined use of conventional observations and satellite data. Based on results from the European Centre for Medium-Range Weather Forecasts (ECMWF), results from different soil moisture and snow depth data assimilation schemes are shown. Both surface fields and low-level atmospheric variables are highly sensitive to the soil moisture and snow initialisation methods. Recent developments of ECMWF in soil moisture and snow data assimilation improved surface and atmospheric forecast performance.


Weather and Forecasting | 2010

An Intercomparison of Simulated Rainfall and Evapotranspiration Associated with a Mesoscale Convective System over West Africa

Françoise Guichard; Nicole Asencio; Christophe Peugeot; Olivier Bock; Jean-Luc Redelsperger; Xuefeng Cui; Matthew Garvert; Benjamin Lamptey; Emiliano Orlandi; Julia Sander; Federico Fierli; Miguel Angel Gaertner; Sarah C. Jones; Jean-Philippe Lafore; Andrew P. Morse; Mathieu Nuret; Aaron Boone; Gianpaolo Balsamo; Patricia de Rosnay; Philip P. Harris; J.-C. Bergès

Abstract An evaluation of precipitation and evapotranspiration simulated by mesoscale models is carried out within the African Monsoon Multidisciplinary Analysis (AMMA) program. Six models performed simulations of a mesoscale convective system (MCS) observed to cross part of West Africa in August 2005. Initial and boundary conditions are found to significantly control the locations of rainfall at synoptic scales as simulated with either mesoscale or global models. When initialized and forced at their boundaries by the same analysis, all models forecast a westward-moving rainfall structure, as observed by satellite products. However, rainfall is also forecast at other locations where none was observed, and the nighttime northward propagation of rainfall is not well reproduced. There is a wide spread in the rainfall rates across simulations, but also among satellite products. The range of simulated meridional fluctuations of evapotranspiration (E) appears reasonable, but E displays an overly strong zonal sy...


IEEE Transactions on Geoscience and Remote Sensing | 2014

SMOS Brightness Temperature Angular Noise: Characterization, Filtering, and Validation

Joaquín Muñoz-Sabater; Patricia de Rosnay; Carlos J. Jimenez; Lars Isaksen; Clément Albergel

The 2-D interferometric radiometer on board the Soil Moisture and Ocean Salinity (SMOS) satellite has been providing a continuous data set of brightness temperatures, at different viewing geometries, containing information of the Earths surface microwave emission. This data set is affected by several sources of noise, which are a combination of the noise associated with the radiometer itself and the different views under which a heterogeneous target, such as continental surfaces, is observed. As a result, the SMOS data set is affected by a significant amount of noise. For many applications, such as soil moisture retrieval, reducing noise from the observations while keeping the signal is necessary, and the accuracy of the retrievals depends on the quality of the observed data set. This paper investigates the averaging of SMOS brightness temperatures in angular bins of different sizes as a simple method to reduce noise. All the observations belonging to a single pixel and satellite overpass were fitted to a polynomial regression model, with the objective of characterizing and evaluating the associated noise. Then, the observations were averaged in angular bins of different sizes, and the potential benefit of this process to reduce noise from the data was quantified. It was found that, if a 2° angular bin is used to average the data, the noise is reduced by up to 3 K. Furthermore, this method complements necessary data thinning approaches when a large volume of data is used in data assimilation systems.

Collaboration


Dive into the Patricia de Rosnay's collaboration.

Top Co-Authors

Avatar

Yann Kerr

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Clément Albergel

European Centre for Medium-Range Weather Forecasts

View shared research outputs
Top Co-Authors

Avatar

Gianpaolo Balsamo

European Centre for Medium-Range Weather Forecasts

View shared research outputs
Top Co-Authors

Avatar

Claire Gruhier

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Jean-Pierre Wigneron

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

W. Wagner

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar

Matthias Drusch

European Centre for Medium-Range Weather Forecasts

View shared research outputs
Top Co-Authors

Avatar

Yongkang Xue

University of California

View shared research outputs
Top Co-Authors

Avatar

Luca Brocca

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Jan Polcher

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge