Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giddy Landan is active.

Publication


Featured researches published by Giddy Landan.


Nucleic Acids Research | 2010

GUIDANCE: a web server for assessing alignment confidence scores

Osnat Penn; Eyal Privman; Haim Ashkenazy; Giddy Landan; Dan Graur; Tal Pupko

Evaluating the accuracy of multiple sequence alignment (MSA) is critical for virtually every comparative sequence analysis that uses an MSA as input. Here we present the GUIDANCE web-server, a user-friendly, open access tool for the identification of unreliable alignment regions. The web-server accepts as input a set of unaligned sequences. The server aligns the sequences and provides a simple graphic visualization of the confidence score of each column, residue and sequence of an alignment, using a color-coding scheme. The method is generic and the user is allowed to choose the alignment algorithm (ClustalW, MAFFT and PRANK are supported) as well as any type of molecular sequences (nucleotide, protein or codon sequences). The server implements two different algorithms for evaluating confidence scores: (i) the heads-or-tails (HoT) method, which measures alignment uncertainty due to co-optimal solutions; (ii) the GUIDANCE method, which measures the robustness of the alignment to guide-tree uncertainty. The server projects the confidence scores onto the MSA and points to columns and sequences that are unreliably aligned. These can be automatically removed in preparation for downstream analyses. GUIDANCE is freely available for use at http://guidance.tau.ac.il.


Molecular Biology and Evolution | 2008

Genes of Cyanobacterial Origin in Plant Nuclear Genomes Point to a Heterocyst-Forming Plastid Ancestor

Oliver Deusch; Giddy Landan; Mayo Roettger; Nicole Gruenheit; Klaus V. Kowallik; John F. Allen; William Martin; Tal Dagan

Plastids are descended from a cyanobacterial symbiosis which occurred over 1.2 billion years ago. During the course of endosymbiosis, most genes were lost from the cyanobacteriums genome and many were relocated to the host nucleus through endosymbiotic gene transfer (EGT). The issue of how many genes were acquired through EGT in different plant lineages is unresolved. Here, we report the genome-wide frequency of gene acquisitions from cyanobacteria in 4 photosynthetic eukaryotes--Arabidopsis, rice, Chlamydomonas, and the red alga Cyanidioschyzon--by comparison of the 83,138 proteins encoded in their genomes with 851,607 proteins encoded in 9 sequenced cyanobacterial genomes, 215 other reference prokaryotic genomes, and 13 reference eukaryotic genomes. The analyses entail 11,569 phylogenies inferred with both maximum likelihood and Neighbor-Joining approaches. Because each phylogenetic result is dependent not only upon the reconstruction method but also upon the site patterns in the underlying alignment, we investigated how the reliability of site pattern generation via alignment affects our results: if the site patterns in an alignment differ depending upon the order in which amino acids are introduced into multiple sequence alignment--N- to C-terminal versus C- to N-terminal--then the phylogenetic result is likely to be artifactual. Excluding unreliable alignments by this means, we obtain a conservative estimate, wherein about 14% of the proteins examined in each plant genome indicate a cyanobacterial origin for the corresponding nuclear gene, with higher proportions (17-25%) observed among the more reliable alignments. The identification of cyanobacterial genes in plant genomes affords access to an important question: from which type of cyanobacterium did the ancestor of plastids arise? Among the 9 cyanobacterial genomes sampled, Nostoc sp. PCC7120 and Anabaena variabilis ATCC29143 were found to harbor collections of genes which are-in terms of presence/absence and sequence similarity-more like those possessed by the plastid ancestor than those of the other 7 cyanobacterial genomes sampled here. This suggests that the ancestor of plastids might have been an organism more similar to filamentous, heterocyst-forming (nitrogen-fixing) representatives of section IV recognized in Staniers cyanobacterial classification. Members of section IV are very common partners in contemporary symbiotic associations involving endosymbiotic cyanobacteria, which generally provide nitrogen to their host, consistent with suggestions that fixed nitrogen supplied by the endosymbiont might have played an important role during the origin of plastids.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Acquisition of 1,000 eubacterial genes physiologically transformed a methanogen at the origin of Haloarchaea

Shijulal Nelson-Sathi; Tal Dagan; Giddy Landan; Arnold Janssen; Mike Steel; James O. McInerney; Uwe Deppenmeier; William Martin

Archaebacterial halophiles (Haloarchaea) are oxygen-respiring heterotrophs that derive from methanogens—strictly anaerobic, hydrogen-dependent autotrophs. Haloarchaeal genomes are known to have acquired, via lateral gene transfer (LGT), several genes from eubacteria, but it is yet unknown how many genes the Haloarchaea acquired in total and, more importantly, whether independent haloarchaeal lineages acquired their genes in parallel, or as a single acquisition at the origin of the group. Here we have studied 10 haloarchaeal and 1,143 reference genomes and have identified 1,089 haloarchaeal gene families that were acquired by a methanogenic recipient from eubacteria. The data suggest that these genes were acquired in the haloarchaeal common ancestor, not in parallel in independent haloarchaeal lineages, nor in the common ancestor of haloarchaeans and methanosarcinales. The 1,089 acquisitions include genes for catabolic carbon metabolism, membrane transporters, menaquinone biosynthesis, and complexes I–IV of the eubacterial respiratory chain that functions in the haloarchaeal membrane consisting of diphytanyl isoprene ether lipids. LGT on a massive scale transformed a strictly anaerobic, chemolithoautotrophic methanogen into the heterotrophic, oxygen-respiring, and bacteriorhodopsin-photosynthetic haloarchaeal common ancestor.


Genome Research | 2011

Directed networks reveal genomic barriers and DNA repair bypasses to lateral gene transfer among prokaryotes

Ovidiu Popa; Einat Hazkani-Covo; Giddy Landan; William Martin; Tal Dagan

Lateral gene transfer (LGT) plays a major role in prokaryote evolution with only a few genes that are resistant to it; yet the nature and magnitude of barriers to lateral transfer are still debated. Here, we implement directed networks to investigate donor-recipient events of recent lateral gene transfer among 657 sequenced prokaryote genomes. For 2,129,548 genes investigated, we detected 446,854 recent lateral gene transfer events through nucleotide pattern analysis. Among these, donor-recipient relationships could be specified through phylogenetic reconstruction for 7% of the pairs, yielding 32,028 polarized recent gene acquisition events, which constitute the edges of our directed networks. We find that the frequency of recent LGT is linearly correlated both with genome sequence similarity and with proteome similarity of donor-recipient pairs. Genome sequence similarity accounts for 25% of the variation in gene-transfer frequency, with proteome similarity adding only 1% to the variability explained. The range of donor-recipient GC content similarity within the network is extremely narrow, with 86% of the LGTs occurring between donor-recipient pairs having ≤5% difference in GC content. Hence, genome sequence similarity and GC content similarity are strong barriers to LGT in prokaryotes. But they are not insurmountable, as we detected 1530 recent transfers between distantly related genomes. The directed network revealed that recipient genomes of distant transfers encode proteins of nonhomologous end-joining (NHEJ; a DNA repair mechanism) far more frequently than the recipient lacking that mechanism. This implicates NHEJ in genes spread across distantly related prokaryotes through bypassing the donor-recipient sequence similarity barrier.


Genome Biology and Evolution | 2013

Genomes of Stigonematalean Cyanobacteria (Subsection V) and the Evolution of Oxygenic Photosynthesis from Prokaryotes to Plastids

Tal Dagan; Mayo Roettger; Karina Stucken; Giddy Landan; Robin Koch; Peter Major; Sven B. Gould; Vadim V. Goremykin; Rosmarie Rippka; Nicole Tandeau de Marsac; Muriel Gugger; Peter J. Lockhart; John F. Allen; Iris Brune; Irena Maus; Alfred Pühler; William Martin

Cyanobacteria forged two major evolutionary transitions with the invention of oxygenic photosynthesis and the bestowal of photosynthetic lifestyle upon eukaryotes through endosymbiosis. Information germane to understanding those transitions is imprinted in cyanobacterial genomes, but deciphering it is complicated by lateral gene transfer (LGT). Here, we report genome sequences for the morphologically most complex true-branching cyanobacteria, and for Scytonema hofmanni PCC 7110, which with 12,356 proteins is the most gene-rich prokaryote currently known. We investigated components of cyanobacterial evolution that have been vertically inherited, horizontally transferred, and donated to eukaryotes at plastid origin. The vertical component indicates a freshwater origin for water-splitting photosynthesis. Networks of the horizontal component reveal that 60% of cyanobacterial gene families have been affected by LGT. Plant nuclear genes acquired from cyanobacteria define a lower bound frequency of 611 multigene families that, in turn, specify diazotrophic cyanobacterial lineages as having a gene collection most similar to that possessed by the plastid ancestor.


Nature | 2015

Origins of major archaeal clades correspond to gene acquisitions from bacteria.

Shijulal Nelson-Sathi; Filipa L. Sousa; Mayo Roettger; Nabor Lozada-Chávez; Thorsten Thiergart; Arnold Janssen; David Bryant; Giddy Landan; Peter Schönheit; Bettina Siebers; James O. McInerney; William Martin

The mechanisms that underlie the origin of major prokaryotic groups are poorly understood. In principle, the origin of both species and higher taxa among prokaryotes should entail similar mechanisms—ecological interactions with the environment paired with natural genetic variation involving lineage-specific gene innovations and lineage-specific gene acquisitions. To investigate the origin of higher taxa in archaea, we have determined gene distributions and gene phylogenies for the 267,568 protein-coding genes of 134 sequenced archaeal genomes in the context of their homologues from 1,847 reference bacterial genomes. Archaeal-specific gene families define 13 traditionally recognized archaeal higher taxa in our sample. Here we report that the origins of these 13 groups unexpectedly correspond to 2,264 group-specific gene acquisitions from bacteria. Interdomain gene transfer is highly asymmetric, transfers from bacteria to archaea are more than fivefold more frequent than vice versa. Gene transfers identified at major evolutionary transitions among prokaryotes specifically implicate gene acquisitions for metabolic functions from bacteria as key innovations in the origin of higher archaeal taxa.


Nature | 2015

Endosymbiotic origin and differential loss of eukaryotic genes

Chuan Ku; Shijulal Nelson-Sathi; Mayo Roettger; Filipa L. Sousa; Peter J. Lockhart; David Bryant; Einat Hazkani-Covo; James O. McInerney; Giddy Landan; William Martin

Chloroplasts arose from cyanobacteria, mitochondria arose from proteobacteria. Both organelles have conserved their prokaryotic biochemistry, but their genomes are reduced, and most organelle proteins are encoded in the nucleus. Endosymbiotic theory posits that bacterial genes in eukaryotic genomes entered the eukaryotic lineage via organelle ancestors. It predicts episodic influx of prokaryotic genes into the eukaryotic lineage, with acquisition corresponding to endosymbiotic events. Eukaryotic genome sequences, however, increasingly implicate lateral gene transfer, both from prokaryotes to eukaryotes and among eukaryotes, as a source of gene content variation in eukaryotic genomes, which predicts continuous, lineage-specific acquisition of prokaryotic genes in divergent eukaryotic groups. Here we discriminate between these two alternatives by clustering and phylogenetic analysis of eukaryotic gene families having prokaryotic homologues. Our results indicate (1) that gene transfer from bacteria to eukaryotes is episodic, as revealed by gene distributions, and coincides with major evolutionary transitions at the origin of chloroplasts and mitochondria; (2) that gene inheritance in eukaryotes is vertical, as revealed by extensive topological comparison, sparse gene distributions stemming from differential loss; and (3) that continuous, lineage-specific lateral gene transfer, although it sometimes occurs, does not contribute to long-term gene content evolution in eukaryotic genomes.


Philosophical Transactions of the Royal Society B | 2013

Early bioenergetic evolution

Filipa L. Sousa; Thorsten Thiergart; Giddy Landan; Shijulal Nelson-Sathi; Inês A. C. Pereira; John F. Allen; Nick Lane; William Martin

Life is the harnessing of chemical energy in such a way that the energy-harnessing device makes a copy of itself. This paper outlines an energetically feasible path from a particular inorganic setting for the origin of life to the first free-living cells. The sources of energy available to early organic synthesis, early evolving systems and early cells stand in the foreground, as do the possible mechanisms of their conversion into harnessable chemical energy for synthetic reactions. With regard to the possible temporal sequence of events, we focus on: (i) alkaline hydrothermal vents as the far-from-equilibrium setting, (ii) the Wood–Ljungdahl (acetyl-CoA) pathway as the route that could have underpinned carbon assimilation for these processes, (iii) biochemical divergence, within the naturally formed inorganic compartments at a hydrothermal mound, of geochemically confined replicating entities with a complexity below that of free-living prokaryotes, and (iv) acetogenesis and methanogenesis as the ancestral forms of carbon and energy metabolism in the first free-living ancestors of the eubacteria and archaebacteria, respectively. In terms of the main evolutionary transitions in early bioenergetic evolution, we focus on: (i) thioester-dependent substrate-level phosphorylations, (ii) harnessing of naturally existing proton gradients at the vent–ocean interface via the ATP synthase, (iii) harnessing of Na+ gradients generated by H+/Na+ antiporters, (iv) flavin-based bifurcation-dependent gradient generation, and finally (v) quinone-based (and Q-cycle-dependent) proton gradient generation. Of those five transitions, the first four are posited to have taken place at the vent. Ultimately, all of these bioenergetic processes depend, even today, upon CO2 reduction with low-potential ferredoxin (Fd), generated either chemosynthetically or photosynthetically, suggesting a reaction of the type ‘reduced iron → reduced carbon’ at the beginning of bioenergetic evolution.


Genome Biology and Evolution | 2012

An Evolutionary Network of Genes Present in the Eukaryote Common Ancestor Polls Genomes on Eukaryotic and Mitochondrial Origin

Thorsten Thiergart; Giddy Landan; Marc Schenk; Tal Dagan; William Martin

To test the predictions of competing and mutually exclusive hypotheses for the origin of eukaryotes, we identified from a sample of 27 sequenced eukaryotic and 994 sequenced prokaryotic genomes 571 genes that were present in the eukaryote common ancestor and that have homologues among eubacterial and archaebacterial genomes. Maximum-likelihood trees identified the prokaryotic genomes that most frequently contained genes branching as the sister to the eukaryotic nuclear homologues. Among the archaebacteria, euryarchaeote genomes most frequently harbored the sister to the eukaryotic nuclear gene, whereas among eubacteria, the α-proteobacteria were most frequently represented within the sister group. Only 3 genes out of 571 gave a 3-domain tree. Homologues from α-proteobacterial genomes that branched as the sister to nuclear genes were found more frequently in genomes of facultatively anaerobic members of the rhiozobiales and rhodospirilliales than in obligate intracellular ricketttsial parasites. Following α-proteobacteria, the most frequent eubacterial sister lineages were γ-proteobacteria, δ-proteobacteria, and firmicutes, which were also the prokaryote genomes least frequently found as monophyletic groups in our trees. Although all 22 higher prokaryotic taxa sampled (crenarchaeotes, γ-proteobacteria, spirochaetes, chlamydias, etc.) harbor genes that branch as the sister to homologues present in the eukaryotic common ancestor, that is not evidence of 22 different prokaryotic cells participating at eukaryote origins because prokaryotic “lineages” have laterally acquired genes for more than 1.5 billion years since eukaryote origins. The data underscore the archaebacterial (host) nature of the eukaryotic informational genes and the eubacterial (mitochondrial) nature of eukaryotic energy metabolism. The network linking genes of the eukaryote ancestor to contemporary homologues distributed across prokaryotic genomes elucidates eukaryote gene origins in a dialect cognizant of gene transfer in nature.


Genome Biology and Evolution | 2009

Estimates of Positive Darwinian Selection Are Inflated by Errors in Sequencing, Annotation, and Alignment

Adrian Schneider; Alexander Souvorov; Niv Sabath; Giddy Landan; Gaston H. Gonnet; Dan Graur

Published estimates of the proportion of positively selected genes (PSGs) in human vary over three orders of magnitude. In mammals, estimates of the proportion of PSGs cover an even wider range of values. We used 2,980 orthologous protein-coding genes from human, chimpanzee, macaque, dog, cow, rat, and mouse as well as an established phylogenetic topology to infer the fraction of PSGs in all seven terminal branches. The inferred fraction of PSGs ranged from 0.9% in human through 17.5% in macaque to 23.3% in dog. We found three factors that influence the fraction of genes that exhibit telltale signs of positive selection: the quality of the sequence, the degree of misannotation, and ambiguities in the multiple sequence alignment. The inferred fraction of PSGs in sequences that are deficient in all three criteria of coverage, annotation, and alignment is 7.2 times higher than that in genes with high trace sequencing coverage, “known” annotation status, and perfect alignment scores. We conclude that some estimates on the prevalence of positive Darwinian selection in the literature may be inflated and should be treated with caution.

Collaboration


Dive into the Giddy Landan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dan Graur

University of Houston

View shared research outputs
Top Co-Authors

Avatar

William Martin

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar

Mayo Roettger

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kiyoshi Ezawa

Kyushu Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge