Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tal Dagan is active.

Publication


Featured researches published by Tal Dagan.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Modular networks and cumulative impact of lateral transfer in prokaryote genome evolution.

Tal Dagan; Yael Artzy-Randrup; William Martin

Lateral gene transfer is an important mechanism of natural variation among prokaryotes, but the significance of its quantitative contribution to genome evolution is debated. Here, we report networks that capture both vertical and lateral components of evolutionary history among 539,723 genes distributed across 181 sequenced prokaryotic genomes. Partitioning of these networks by an eigenspectrum analysis identifies community structure in prokaryotic gene-sharing networks, the modules of which do not correspond to a strictly hierarchical prokaryotic classification. Our results indicate that, on average, at least 81 ± 15% of the genes in each genome studied were involved in lateral gene transfer at some point in their history, even though they can be vertically inherited after acquisition, uncovering a substantial cumulative effect of lateral gene transfer on longer evolutionary time scales.


Genome Biology | 2006

The tree of one percent

Tal Dagan; William Martin

Two significant evolutionary processes are fundamentally not tree-like in nature - lateral gene transfer among prokaryotes and endosymbiotic gene transfer (from organelles) among eukaryotes. To incorporate such processes into the bigger picture of early evolution, biologists need to depart from the preconceived notion that all genomes are related by a single bifurcating tree.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Ancestral genome sizes specify the minimum rate of lateral gene transfer during prokaryote evolution

Tal Dagan; William Martin

The amount of lateral gene transfer (LGT) that has occurred in microbial evolution is heavily debated. Efforts to quantify LGT through gene-tree comparisons have delivered estimates that between 2% and 60% of all prokaryotic genes have been affected by LGT, the 30-fold discrepancy reflecting differences among gene samples studied and uncertainties inherent in phylogenetic reconstruction. Here we present a simple method that is independent of gene-tree comparisons to estimate the LGT rate among sequenced prokaryotic genomes. If little or no LGT has occurred during evolution, ancestral genome sizes would become unrealistically large, whereas too much LGT would render them far too small. We determine the amount of LGT that is necessary and sufficient to bring the distribution of inferred ancestral genome sizes into agreement with that observed among modern microbes. Rather than testing for phylogenetic congruence or lack thereof across genes, we assume that all gene trees are compatible; hence, our method delivers very conservative lower-bound estimates of the average LGT rate. The results indicate that among 57,670 gene families distributed across 190 sequenced genomes, at least two-thirds and probably all, have been affected by LGT at some time in their evolutionary past. A component of common ancestry nonetheless remains detectable in gene distribution patterns. We estimate the minimum lower bound for the average LGT rate across all genes as 1.1 LGT events per gene family and gene family lifespan and this minimum rate increases sharply when genes present in only a few genomes are excluded from the analysis.


Molecular Biology and Evolution | 2008

Genes of Cyanobacterial Origin in Plant Nuclear Genomes Point to a Heterocyst-Forming Plastid Ancestor

Oliver Deusch; Giddy Landan; Mayo Roettger; Nicole Gruenheit; Klaus V. Kowallik; John F. Allen; William Martin; Tal Dagan

Plastids are descended from a cyanobacterial symbiosis which occurred over 1.2 billion years ago. During the course of endosymbiosis, most genes were lost from the cyanobacteriums genome and many were relocated to the host nucleus through endosymbiotic gene transfer (EGT). The issue of how many genes were acquired through EGT in different plant lineages is unresolved. Here, we report the genome-wide frequency of gene acquisitions from cyanobacteria in 4 photosynthetic eukaryotes--Arabidopsis, rice, Chlamydomonas, and the red alga Cyanidioschyzon--by comparison of the 83,138 proteins encoded in their genomes with 851,607 proteins encoded in 9 sequenced cyanobacterial genomes, 215 other reference prokaryotic genomes, and 13 reference eukaryotic genomes. The analyses entail 11,569 phylogenies inferred with both maximum likelihood and Neighbor-Joining approaches. Because each phylogenetic result is dependent not only upon the reconstruction method but also upon the site patterns in the underlying alignment, we investigated how the reliability of site pattern generation via alignment affects our results: if the site patterns in an alignment differ depending upon the order in which amino acids are introduced into multiple sequence alignment--N- to C-terminal versus C- to N-terminal--then the phylogenetic result is likely to be artifactual. Excluding unreliable alignments by this means, we obtain a conservative estimate, wherein about 14% of the proteins examined in each plant genome indicate a cyanobacterial origin for the corresponding nuclear gene, with higher proportions (17-25%) observed among the more reliable alignments. The identification of cyanobacterial genes in plant genomes affords access to an important question: from which type of cyanobacterium did the ancestor of plastids arise? Among the 9 cyanobacterial genomes sampled, Nostoc sp. PCC7120 and Anabaena variabilis ATCC29143 were found to harbor collections of genes which are-in terms of presence/absence and sequence similarity-more like those possessed by the plastid ancestor than those of the other 7 cyanobacterial genomes sampled here. This suggests that the ancestor of plastids might have been an organism more similar to filamentous, heterocyst-forming (nitrogen-fixing) representatives of section IV recognized in Staniers cyanobacterial classification. Members of section IV are very common partners in contemporary symbiotic associations involving endosymbiotic cyanobacteria, which generally provide nitrogen to their host, consistent with suggestions that fixed nitrogen supplied by the endosymbiont might have played an important role during the origin of plastids.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Acquisition of 1,000 eubacterial genes physiologically transformed a methanogen at the origin of Haloarchaea

Shijulal Nelson-Sathi; Tal Dagan; Giddy Landan; Arnold Janssen; Mike Steel; James O. McInerney; Uwe Deppenmeier; William Martin

Archaebacterial halophiles (Haloarchaea) are oxygen-respiring heterotrophs that derive from methanogens—strictly anaerobic, hydrogen-dependent autotrophs. Haloarchaeal genomes are known to have acquired, via lateral gene transfer (LGT), several genes from eubacteria, but it is yet unknown how many genes the Haloarchaea acquired in total and, more importantly, whether independent haloarchaeal lineages acquired their genes in parallel, or as a single acquisition at the origin of the group. Here we have studied 10 haloarchaeal and 1,143 reference genomes and have identified 1,089 haloarchaeal gene families that were acquired by a methanogenic recipient from eubacteria. The data suggest that these genes were acquired in the haloarchaeal common ancestor, not in parallel in independent haloarchaeal lineages, nor in the common ancestor of haloarchaeans and methanosarcinales. The 1,089 acquisitions include genes for catabolic carbon metabolism, membrane transporters, menaquinone biosynthesis, and complexes I–IV of the eubacterial respiratory chain that functions in the haloarchaeal membrane consisting of diphytanyl isoprene ether lipids. LGT on a massive scale transformed a strictly anaerobic, chemolithoautotrophic methanogen into the heterotrophic, oxygen-respiring, and bacteriorhodopsin-photosynthetic haloarchaeal common ancestor.


Genome Research | 2011

Directed networks reveal genomic barriers and DNA repair bypasses to lateral gene transfer among prokaryotes

Ovidiu Popa; Einat Hazkani-Covo; Giddy Landan; William Martin; Tal Dagan

Lateral gene transfer (LGT) plays a major role in prokaryote evolution with only a few genes that are resistant to it; yet the nature and magnitude of barriers to lateral transfer are still debated. Here, we implement directed networks to investigate donor-recipient events of recent lateral gene transfer among 657 sequenced prokaryote genomes. For 2,129,548 genes investigated, we detected 446,854 recent lateral gene transfer events through nucleotide pattern analysis. Among these, donor-recipient relationships could be specified through phylogenetic reconstruction for 7% of the pairs, yielding 32,028 polarized recent gene acquisition events, which constitute the edges of our directed networks. We find that the frequency of recent LGT is linearly correlated both with genome sequence similarity and with proteome similarity of donor-recipient pairs. Genome sequence similarity accounts for 25% of the variation in gene-transfer frequency, with proteome similarity adding only 1% to the variability explained. The range of donor-recipient GC content similarity within the network is extremely narrow, with 86% of the LGTs occurring between donor-recipient pairs having ≤5% difference in GC content. Hence, genome sequence similarity and GC content similarity are strong barriers to LGT in prokaryotes. But they are not insurmountable, as we detected 1530 recent transfers between distantly related genomes. The directed network revealed that recipient genomes of distant transfers encode proteins of nonhomologous end-joining (NHEJ; a DNA repair mechanism) far more frequently than the recipient lacking that mechanism. This implicates NHEJ in genes spread across distantly related prokaryotes through bypassing the donor-recipient sequence similarity barrier.


Genome Biology and Evolution | 2013

Genomes of Stigonematalean Cyanobacteria (Subsection V) and the Evolution of Oxygenic Photosynthesis from Prokaryotes to Plastids

Tal Dagan; Mayo Roettger; Karina Stucken; Giddy Landan; Robin Koch; Peter Major; Sven B. Gould; Vadim V. Goremykin; Rosmarie Rippka; Nicole Tandeau de Marsac; Muriel Gugger; Peter J. Lockhart; John F. Allen; Iris Brune; Irena Maus; Alfred Pühler; William Martin

Cyanobacteria forged two major evolutionary transitions with the invention of oxygenic photosynthesis and the bestowal of photosynthetic lifestyle upon eukaryotes through endosymbiosis. Information germane to understanding those transitions is imprinted in cyanobacterial genomes, but deciphering it is complicated by lateral gene transfer (LGT). Here, we report genome sequences for the morphologically most complex true-branching cyanobacteria, and for Scytonema hofmanni PCC 7110, which with 12,356 proteins is the most gene-rich prokaryote currently known. We investigated components of cyanobacterial evolution that have been vertically inherited, horizontally transferred, and donated to eukaryotes at plastid origin. The vertical component indicates a freshwater origin for water-splitting photosynthesis. Networks of the horizontal component reveal that 60% of cyanobacterial gene families have been affected by LGT. Plant nuclear genes acquired from cyanobacteria define a lower bound frequency of 611 multigene families that, in turn, specify diazotrophic cyanobacterial lineages as having a gene collection most similar to that possessed by the plastid ancestor.


Molecular Biology and Evolution | 2009

A Proteomic Survey of Chlamydomonas reinhardtii Mitochondria Sheds New Light on the Metabolic Plasticity of the Organelle and on the Nature of the α-Proteobacterial Mitochondrial Ancestor

Ariane Atteia; Annie Adrait; Sabine Brugière; Marianne Tardif; Robert van Lis; Oliver Deusch; Tal Dagan; Lauriane Kuhn; Brigitte Gontero; William Martin; Jérôme Garin; Jacques Joyard; Norbert Rolland

Mitochondria play a key role in the life and death of eukaryotic cells, yet the full spectrum of mitochondrial functions is far from being fully understood, especially in photosynthetic organisms. To advance our understanding of mitochondrial functions in a photosynthetic cell, an extensive proteomic survey of Percoll-purified mitochondria from the metabolically versatile, hydrogen-producing green alga Chlamydomonas reinhardtii was performed. Different fractions of purified mitochondria from Chlamydomonas cells grown under aerobic conditions were analyzed by nano-liquid chromatography-electrospray ionization-mass spectrometry after protein separation on sodium dodecyl sulfate polyacrylamide gel electrophoresis or on blue-native polyacrylamide gel electrophoresis. Of the 496 nonredundant proteins identified, 149 are known or predicted to reside in other cellular compartments and were thus excluded from the molecular and evolutionary analyses of the Chlamydomonas proteome. The mitochondrial proteome of the photosynthetic alga reveals important lineage-specific differences with other mitochondrial proteomes, reflecting the high metabolic diversity of the organelle. Some mitochondrial metabolic pathways in Chlamydomonas appear to combine typical mitochondrial enzymes and bacterial-type ones, whereas others are unknown among mitochondriate eukaryotes. The comparison of the Chlamydomonas proteins to their identifiable homologs predicted from 354 sequenced genomes indicated that Arabidopsis is the most closely related nonalgal eukaryote. Furthermore, this phylogenomic analysis shows that free-living alpha-proteobacteria from the metabolically versatile orders Rhizobiales and Rhodobacterales better reflect the gene content of the ancestor of the chlorophyte mitochondria than parasitic alpha-proteobacteria with reduced and specialized genomes.


Current Opinion in Microbiology | 2011

Trends and barriers to lateral gene transfer in prokaryotes.

Ovidiu Popa; Tal Dagan

Gene acquisition by lateral gene transfer (LGT) is an important mechanism for natural variation among prokaryotes. Laboratory experiments show that protein-coding genes can be laterally transferred extremely fast among microbial cells, inherited to most of their descendants, and adapt to a new regulatory regime within a short time. Recent advance in the phylogenetic analysis of microbial genomes using networks approach reveals a substantial impact of LGT during microbial genome evolution. Phylogenomic networks of LGT among prokaryotes reconstructed from completely sequenced genomes uncover barriers to LGT in multiple levels. Here we discuss the kinds of barriers to gene acquisition in nature including physical barriers for gene transfer between cells, genomic barriers for the integration of acquired DNA, and functional barriers for the acquisition of new genes.


Molecular Biology and Evolution | 2011

Transcriptomic Evidence That Longevity of Acquired Plastids in the Photosynthetic Slugs Elysia timida and Plakobranchus ocellatus Does Not Entail Lateral Transfer of Algal Nuclear Genes

Heike Wägele; Oliver Deusch; Katharina Händeler; Rainer Martin; Valerie Schmitt; Gregor Christa; Britta Pinzger; Sven B. Gould; Tal Dagan; Annette Klussmann-Kolb; William Martin

Sacoglossan sea slugs are unique in the animal kingdom in that they sequester and maintain active plastids that they acquire from the siphonaceous algae upon which they feed, making the animals photosynthetic. Although most sacoglossan species digest their freshly ingested plastids within hours, four species from the family Plakobranchidae retain their stolen plastids (kleptoplasts) in a photosynthetically active state on timescales of weeks to months. The molecular basis of plastid maintenance within the cytosol of digestive gland cells in these photosynthetic metazoans is yet unknown but is widely thought to involve gene transfer from the algal food source to the slugs based upon previous investigations of single genes. Indeed, normal plastid development requires hundreds of nuclear-encoded proteins, with protein turnover in photosystem II in particular known to be rapid under various conditions. Moreover, only algal plastids, not the algal nuclei, are sequestered by the animals during feeding. If algal nuclear genes are transferred to the animal either during feeding or in the germ line, and if they are expressed, then they should be readily detectable with deep-sequencing methods. We have sequenced expressed mRNAs from actively photosynthesizing, starved individuals of two photosynthetic sea slug species, Plakobranchus ocellatus Van Hasselt, 1824 and Elysia timida Risso, 1818. We find that nuclear-encoded, algal-derived genes specific to photosynthetic function are expressed neither in P. ocellatus nor in E. timida. Despite their dramatic plastid longevity, these photosynthetic sacoglossan slugs do not express genes acquired from algal nuclei in order to maintain plastid function.

Collaboration


Dive into the Tal Dagan's collaboration.

Top Co-Authors

Avatar

William Martin

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dan Graur

University of Houston

View shared research outputs
Top Co-Authors

Avatar

Sven B. Gould

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mayo Roettger

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar

Karina Stucken

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge