Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gideon Rechavi is active.

Publication


Featured researches published by Gideon Rechavi.


Nature | 2012

Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq

Dan Dominissini; Sharon Moshitch-Moshkovitz; Schraga Schwartz; Mali Salmon-Divon; Lior Ungar; Sivan Osenberg; Karen Cesarkas; Jasmine Jacob-Hirsch; Ninette Amariglio; Martin Kupiec; Rotem Sorek; Gideon Rechavi

An extensive repertoire of modifications is known to underlie the versatile coding, structural and catalytic functions of RNA, but it remains largely uncharted territory. Although biochemical studies indicate that N6-methyladenosine (m6A) is the most prevalent internal modification in messenger RNA, an in-depth study of its distribution and functions has been impeded by a lack of robust analytical methods. Here we present the human and mouse m6A modification landscape in a transcriptome-wide manner, using a novel approach, m6A-seq, based on antibody-mediated capture and massively parallel sequencing. We identify over 12,000 m6A sites characterized by a typical consensus in the transcripts of more than 7,000 human genes. Sites preferentially appear in two distinct landmarks—around stop codons and within long internal exons—and are highly conserved between human and mouse. Although most sites are well preserved across normal and cancerous tissues and in response to various stimuli, a subset of stimulus-dependent, dynamically modulated sites is identified. Silencing the m6A methyltransferase significantly affects gene expression and alternative splicing patterns, resulting in modulation of the p53 (also known as TP53) signalling pathway and apoptosis. Our findings therefore suggest that RNA decoration by m6A has a fundamental role in regulation of gene expression.


PLOS Medicine | 2009

Donor-Derived Brain Tumor Following Neural Stem Cell Transplantation in an Ataxia Telangiectasia Patient

Ninette Amariglio; Abraham Hirshberg; Bernd W. Scheithauer; Yoram Cohen; Ron Loewenthal; Luba Trakhtenbrot; Nurit Paz; Maya Koren-Michowitz; Dalia Waldman; Leonor Leider-Trejo; Amos Toren; Shlomi Constantini; Gideon Rechavi

Background Neural stem cells are currently being investigated as potential therapies for neurodegenerative diseases, stroke, and trauma. However, concerns have been raised over the safety of this experimental therapeutic approach, including, for example, whether there is the potential for tumors to develop from transplanted stem cells. Methods and Findings A boy with ataxia telangiectasia (AT) was treated with intracerebellar and intrathecal injection of human fetal neural stem cells. Four years after the first treatment he was diagnosed with a multifocal brain tumor. The biopsied tumor was diagnosed as a glioneuronal neoplasm. We compared the tumor cells and the patients peripheral blood cells by fluorescent in situ hybridization using X and Y chromosome probes, by PCR for the amelogenin gene X- and Y-specific alleles, by MassArray for the ATM patient specific mutation and for several SNPs, by PCR for polymorphic microsatellites, and by human leukocyte antigen (HLA) typing. Molecular and cytogenetic studies showed that the tumor was of nonhost origin suggesting it was derived from the transplanted neural stem cells. Microsatellite and HLA analysis demonstrated that the tumor is derived from at least two donors. Conclusions This is the first report of a human brain tumor complicating neural stem cell therapy. The findings here suggest that neuronal stem/progenitor cells may be involved in gliomagenesis and provide the first example of a donor-derived brain tumor. Further work is urgently needed to assess the safety of these therapies.


Nature Biotechnology | 2004

Systematic identification of abundant A-to-I editing sites in the human transcriptome

Erez Y. Levanon; Eli Eisenberg; Rodrigo Yelin; Sergey Nemzer; Martina Hallegger; Ronen Shemesh; Zipora Y. Fligelman; Avi Shoshan; Sarah Pollock; Dan Sztybel; Moshe Olshansky; Gideon Rechavi; Michael F. Jantsch

RNA editing by members of the ADAR (adenosine deaminases acting on RNA) family leads to site-specific conversion of adenosine to inosine (A-to-I) in precursor messenger RNAs. Editing by ADARs is believed to occur in all metazoa, and is essential for mammalian development. Currently, only a limited number of human ADAR substrates are known, whereas indirect evidence suggests a substantial fraction of all pre-mRNAs being affected. Here we describe a computational search for ADAR editing sites in the human transcriptome, using millions of available expressed sequences. We mapped 12,723 A-to-I editing sites in 1,637 different genes, with an estimated accuracy of 95%, raising the number of known editing sites by two orders of magnitude. We experimentally validated our method by verifying the occurrence of editing in 26 novel substrates. A-to-I editing in humans primarily occurs in noncoding regions of the RNA, typically in Alu repeats. Analysis of the large set of editing sites indicates the role of editing in controlling dsRNA stability.


Nature Genetics | 2007

A module of negative feedback regulators defines growth factor signaling.

Ido Amit; Tal Shay; Yiling Lu; Menachem Katz; Fan Zhang; Gabi Tarcic; Doris R. Siwak; John P. Lahad; Jasmine Jacob-Hirsch; Ninette Amariglio; Nora Vaisman; Eran Segal; Gideon Rechavi; Uri Alon; Gordon B. Mills; Eytan Domany; Yosef Yarden

Signaling pathways invoke interplays between forward signaling and feedback to drive robust cellular response. In this study, we address the dynamics of growth factor signaling through profiling of protein phosphorylation and gene expression, demonstrating the presence of a kinetically defined cluster of delayed early genes that function to attenuate the early events of growth factor signaling. Using epidermal growth factor receptor signaling as the major model system and concentrating on regulation of transcription and mRNA stability, we demonstrate that a number of genes within the delayed early gene cluster function as feedback regulators of immediate early genes. Consistent with their role in negative regulation of cell signaling, genes within this cluster are downregulated in diverse tumor types, in correlation with clinical outcome. More generally, our study proposes a mechanistic description of the cellular response to growth factors by defining architectural motifs that underlie the function of signaling networks.


Science | 2015

m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation

Shay Geula; Sharon Moshitch-Moshkovitz; Dan Dominissini; Abed AlFatah Mansour; Nitzan Kol; Mali Salmon-Divon; Vera Hershkovitz; Eyal Peer; Nofar Mor; Yair S. Manor; Moshe Shay Ben-Haim; Eran Eyal; Sharon Yunger; Yishay Pinto; Diego Jaitin; Sergey Viukov; Yoach Rais; Vladislav Krupalnik; Elad Chomsky; Mirie Zerbib; Itay Maza; Yoav Rechavi; Rada Massarwa; Suhair Hanna; Ido Amit; Erez Y. Levanon; Ninette Amariglio; Noam Stern-Ginossar; Noa Novershtern; Gideon Rechavi

mRNA modification regulates pluripotency When stem cells progress from an embryonic pluripotent state toward a particular lineage, molecular switches dismantle the transcription factor network that keeps the cell pluripotent. Geula et al. now show that N6-methyladenosine (m6A), a messenger RNA (mRNA) modification present on transcripts of pluripotency factors, drives this transition. Methylation destabilized mRNA transcripts and limited their translation efficiency, which promoted the timely decay of naïve pluripotency. This m6A methylation was also critical for mammalian development. Science, this issue p. 1002 A messenger RNA epigenetic modification regulates stem cell progression from the pluripotent to the differentiated state. Naïve and primed pluripotent states retain distinct molecular properties, yet limited knowledge exists on how their state transitions are regulated. Here, we identify Mettl3, an N6-methyladenosine (m6A) transferase, as a regulator for terminating murine naïve pluripotency. Mettl3 knockout preimplantation epiblasts and naïve embryonic stem cells are depleted for m6A in mRNAs, yet are viable. However, they fail to adequately terminate their naïve state and, subsequently, undergo aberrant and restricted lineage priming at the postimplantation stage, which leads to early embryonic lethality. m6A predominantly and directly reduces mRNA stability, including that of key naïve pluripotency-promoting transcripts. This study highlights a critical role for an mRNA epigenetic modification in vivo and identifies regulatory modules that functionally influence naïve and primed pluripotency in an opposing manner.


Cell Stem Cell | 2009

Directed Differentiation of Human Embryonic Stem Cells into Functional Retinal Pigment Epithelium Cells

Maria Idelson; Ruslana Alper; Alexey Obolensky; Etti Ben-Shushan; Itzhak Hemo; Nurit Yachimovich-Cohen; Hanita Khaner; Yoav Smith; Ofer Wiser; Michal Gropp; Malkiel A. Cohen; Sharona Even-Ram; Yael Berman-Zaken; Limor Matzrafi; Gideon Rechavi; Eyal Banin; Benjamin E. Reubinoff

Dysfunction and loss of retinal pigment epithelium (RPE) leads to degeneration of photoreceptors in age-related macular degeneration and subtypes of retinitis pigmentosa. Human embryonic stem cells (hESCs) may serve as an unlimited source of RPE cells for transplantation in these blinding conditions. Here we show the directed differentiation of hESCs toward an RPE fate under defined culture conditions. We demonstrate that nicotinamide promotes the differentiation of hESCs to neural and subsequently to RPE fate. In the presence of nicotinamide, factors from the TGF-beta superfamily, which presumably pattern RPE development during embryogenesis, further direct RPE differentiation. The hESC-derived pigmented cells exhibit the morphology, marker expression, and function of authentic RPE and rescue retinal structure and function after transplantation to an animal model of retinal degeneration caused by RPE dysfunction. These results are an important step toward the future use of hESCs to replenish RPE in blinding diseases.


Oncogene | 2001

DNA microarrays identification of primary and secondary target genes regulated by p53

Karuppiah Kannan; Ninette Amariglio; Gideon Rechavi; Jasmine Jakob-Hirsch; Itai Kela; Naftali Kaminski; Gad Getz; Eytan Domany; David Givol

The transcriptional program regulated by the tumor suppressor p53 was analysed using oligonucleotide microarrays. A human lung cancer cell line that expresses the temperature sensitive murine p53 was utilized to quantitate mRNA levels of various genes at different time points after shifting the temperature to 32°C. Inhibition of protein synthesis by cycloheximide (CHX) was used to distinguish between primary and secondary target genes regulated by p53. In the absence of CHX, 259 and 125 genes were up or down-regulated respectively; only 38 and 24 of these genes were up and down-regulated by p53 also in the presence of CHX and are considered primary targets in this cell line. Cluster analysis of these data using the super paramagnetic clustering (SPC) algorithm demonstrate that the primary genes can be distinguished as a single cluster among a large pool of p53 regulated genes. This procedure identified additional genes that co-cluster with the primary targets and can also be classified as such genes. In addition to cell cycle (e.g. p21, TGF-β, Cyclin E) and apoptosis (e.g. Fas, Bak, IAP) related genes, the primary targets of p53 include genes involved in many aspects of cell function, including cell adhesion (e.g. Thymosin, Smoothelin), signaling (e.g. H-Ras, Diacylglycerol kinase), transcription (e.g. ATF3, LISCH7), neuronal growth (e.g. Ninjurin, NSCL2) and DNA repair (e.g. BTG2, DDB2). The results suggest that p53 activates concerted opposing signals and exerts its effect through a diverse network of transcriptional changes that collectively alter the cell phenotype in response to stress.


The Journal of Infectious Diseases | 2004

Association between Common Toll-Like Receptor 4 Mutations and Severe Respiratory Syncytial Virus Disease

Guy Tal; Avigdor Mandelberg; Ilan Dalal; Karine Cesar; Eli Somekh; Asher Tal; Anat Oron; Svetlana Itskovich; Ami Ballin; Sion Houri; Avraham Beigelman; Ofer Lider; Gideon Rechavi; Ninette Amariglio

BACKGROUND The clinical spectrum of respiratory syncytial virus (RSV) bronchiolitis in previously healthy infants is extremely variable. Thus, it is likely that factors such as genetic heterogeneity contribute to disease severity. Toll-like receptor 4 (TLR4) and CD14 are part of a receptor complex involved in the innate immune response to RSV. METHODS The association of the TLR4 mutations (Asp299Gly and Thr399Ile) and the CD14/-159 polymorphism were analyzed in 99 infants hospitalized with severe RSV bronchiolitis (group I). Eighty-two ambulatory infants with mild RSV bronchiolitis (group II) and 90 healthy adults (group III) composed the 2 control groups. The TLR4 mutations and the CD14/-159 polymorphism were genotyped by use of reverse-transcriptase polymerase chain reaction and restriction fragment-length polymorphism analysis, respectively. RESULTS Each of the TLR4 mutations, either alone or in cosegregation, were associated with severe RSV bronchiolitis: the Asp299Gly and Thr399Ile mutations were significantly overrepresented in group I, compared with groups II and III. No association between the CD14/-159 polymorphism and RSV bronchiolitis was found. CONCLUSIONS These findings suggest that TLR4 mutations, but not the CD14/-159 polymorphism, are associated with an increased risk of severe RSV bronchiolitis in previously healthy infants.


Journal of Clinical Oncology | 2009

Diagnostic Assay Based on hsa-miR-205 Expression Distinguishes Squamous From Nonsquamous Non–Small-Cell Lung Carcinoma

Danit Lebanony; Hila Benjamin; Shlomit Gilad; Meital Ezagouri; Avital Dov; Karin Ashkenazi; Nir Gefen; Shai Izraeli; Gideon Rechavi; Harvey I. Pass; Daisuke Nonaka; Junjie Li; Yael Spector; Nitzan Rosenfeld; Ayelet Chajut; Dalia Cohen; Ranit Aharonov; Mahesh Mansukhani

PURPOSE Recent advances in treatment of lung cancer require greater accuracy in the subclassification of non-small-cell lung cancer (NSCLC). Targeted therapies which inhibit tumor angiogenesis pose higher risk for adverse response in cases of squamous cell carcinoma. Interobserver variability and the lack of specific, standardized assays limit the current abilities to adequately stratify patients for such treatments. In this study, we set out to identify specific microRNA biomarkers for the identification of squamous cell carcinoma, and to use such markers for the development of a standardized assay. PATIENTS AND METHODS High-throughput microarray was used to measure microRNA expression levels in 122 adenocarcinoma and squamous NSCLC samples. A quantitative real-time polymerase chain reaction (qRT-PCR) platform was used to verify findings in an independent set of 20 NSCLC formalin-fixed, paraffin-embedded (FFPE) samples, and to develop a diagnostic assay using an additional set of 27 NSCLC FFPE samples. The assay was validated using an independent blinded cohort consisting of 79 NSCLC FFPE samples. RESULTS We identified hsa-miR-205 as a highly specific marker for squamous cell lung carcinoma. A microRNA-based qRT-PCR assay that measures expression of hsa-miR-205 reached sensitivity of 96% and specificity of 90% in the identification of squamous cell lung carcinomas in an independent blinded validation set. CONCLUSION Hsa-miR-205 is a highly accurate marker for lung cancer of squamous histology. The standardized diagnostic assay presented here can provide highly accurate subclassification of NSCLC patients.


Journal of Neural Transmission | 2004

Gene expression profiling of parkinsonian substantia nigra pars compacta; alterations in ubiquitin-proteasome, heat shock protein, iron and oxidative stress regulated proteins, cell adhesion/cellular matrix and vesicle trafficking genes

Edna Grünblatt; Silvia Mandel; J. Jacob-Hirsch; S. Zeligson; N. Amariglo; Gideon Rechavi; J. Li; Rivka Ravid; Wolfgang Roggendorf; Peter Riederer; Moussa B. H. Youdim

Summary.Gene expression profiling of human substantia nigra pars compacta (SNpc) from Parkinson’s disease (PD) patients, was examined employing high density microarrays. We identified alterations in the expression of 137 genes, with 68 down regulated and 69 up regulated. The down regulated genes belong to signal transduction, protein degradation (e.g. ubiquitin-proteasome subunits), dopaminergic transmission/metabolism, ion transport, protein modification/phosphorylation and energy pathways/glycolysis functional classes. Up-regulated genes, clustered mainly in biological processes involving cell adhesion/cytoskeleton, extracellular matrix components, cell cycle, protein modification/phosphorylation, protein metabolism, transcription and inflammation/stress (e.g. key iron and oxygen sensor EGLN1). One major finding in the present study is the particular decreased expression of SKP1A, a member of the SCF (E3) ligase complex specifically in the substantia nigra (SN) of sporadic parkinsonian patients, which may lead to a wide impairment in the function of an entire repertoire of proteins subjected to regulatory ubiquitination. These findings reveal novel players in the neurodegenerative scenario and provide potential targets for the development of novel drug compounds.

Collaboration


Dive into the Gideon Rechavi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Givol

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge