Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amos J. Simon is active.

Publication


Featured researches published by Amos J. Simon.


Journal of Cell Science | 2005

The nuclear-envelope protein and transcriptional repressor LAP2β interacts with HDAC3 at the nuclear periphery, and induces histone H4 deacetylation

Raz Somech; Sigal Shaklai; Orit Geller; Ninette Amariglio; Amos J. Simon; Gideon Rechavi; Einav Nili Gal-Yam

Nuclear-envelope proteins have been implicated in diverse and fundamental cell functions, among them transcriptional regulation. Gene expression at the territory of the nuclear periphery is known to be repressed by epigenetic modifications such as histone deacetylation and methylation. However, the mechanism by which nuclear-envelope proteins are involved in such modifications is still obscure. We have previously shown that LAP2β, an integral nuclear-envelope protein that contains the chromatin-binding LEM domain, was able to repress the transcriptional activity of the E2F5-DP3 heterodimer. Here, we show that LAP2βs repressive activity is more general, encompassing various E2F members as well as other transcription factors such as p53 and NF-κB. We further show that LAP2β interacts at the nuclear envelope with HDAC3, a class-I histone deacetylase, and that TSA (an HDAC inhibitor) abrogates LAP2βs repressive activity. Finally, we show that LAP2β is capable of inducing histone-H4 deacetylation. Our data provide evidence for the existence of a previously unknown repressive complex, composed of an integral nuclear membrane protein and a histone modifier, at the nuclear periphery.


Journal of Experimental Medicine | 2007

A LAD-III syndrome is associated with defective expression of the Rap-1 activator CalDAG-GEFI in lymphocytes, neutrophils, and platelets

Ronit Pasvolsky; Sara W. Feigelson; Sara Sebnem Kilic; Amos J. Simon; Guy Tal-Lapidot; Valentin Grabovsky; Jill R. Crittenden; Ninette Amariglio; Michal Safran; Ann M. Graybiel; Gideon Rechavi; Shifra Ben-Dor; Amos Etzioni; Ronen Alon

Leukocyte and platelet integrins rapidly alter their affinity and adhesiveness in response to various activation (inside-out) signals. A rare leukocyte adhesion deficiency (LAD), LAD-III, is associated with severe defects in leukocyte and platelet integrin activation. We report two new LAD cases in which lymphocytes, neutrophils, and platelets share severe defects in β1, β2, and β3 integrin activation. Patients were both homozygous for a splice junction mutation in their CalDAG-GEFI gene, which is a key Rap-1/2 guanine exchange factor (GEF). Both mRNA and protein levels of the GEF were diminished in LAD lymphocytes, neutrophils, and platelets. Consequently, LAD-III platelets failed to aggregate because of an impaired αIIbβ3 activation by key agonists. β2 integrins on LAD-III neutrophils were unable to mediate leukocyte arrest on TNFα-stimulated endothelium, despite normal selectin-mediated rolling. In situ subsecond activation of neutrophil β2 integrin adhesiveness by surface-bound chemoattractants and of primary T lymphocyte LFA-1 by the CXCL12 chemokine was abolished. Chemokine inside-out signals also failed to stimulate lymphocyte LFA-1 extension and high affinity epitopes. Chemokine-triggered VLA-4 adhesiveness in T lymphocytes was partially defective as well. These studies identify CalDAG-GEFI as a critical regulator of inside-out integrin activation in human T lymphocytes, neutrophils, and platelets.


Journal of Medical Genetics | 2005

The CC2D1A, a member of a new gene family with C2 domains, is involved in autosomal recessive non-syndromic mental retardation

Lina Basel-Vanagaite; Revital Attia; Michal Yahav; Russell J. Ferland; Limor Anteki; Christopher A. Walsh; Tsviya Olender; Rachel Straussberg; Nurit Magal; Ellen Taub; Valerie Drasinover; Anna Alkelai; Dani Bercovich; Gideon Rechavi; Amos J. Simon; Mordechai Shohat

Background: The molecular basis of autosomal recessive non-syndromic mental retardation (NSMR) is poorly understood, mostly owing to heterogeneity and absence of clinical criteria for grouping families for linkage analysis. Only two autosomal genes, the PRSS12 gene on chromosome 4q26 and the CRBN on chromosome 3p26, have been shown to cause autosomal recessive NSMR, each gene in only one family. Objective: To identify the gene causing autosomal recessive NSMR on chromosome 19p13.12. Results: The candidate region established by homozygosity mapping was narrowed down from 2.4 Mb to 0.9 Mb on chromosome 19p13.12. A protein truncating mutation was identified in the gene CC2D1A in nine consanguineous families with severe autosomal recessive NSMR. The absence of the wild type protein in the lymphoblastoid cells of the patients was confirmed. CC2D1A is a member of a previously uncharacterised gene family that carries two conserved motifs, a C2 domain and a DM14 domain. The C2 domain is found in proteins which function in calcium dependent phospholipid binding; the DM14 domain is unique to the CC2D1A protein family and its role is unknown. CC2D1A is a putative signal transducer participating in positive regulation of I-κB kinase/NFκB cascade. Expression of CC2D1A mRNA was shown in the embryonic ventricular zone and developing cortical plate in staged mouse embryos, persisting into adulthood, with highest expression in the cerebral cortex and hippocampus. Conclusions: A previously unknown signal transduction pathway is important in human cognitive development.


Journal of Medical Genetics | 2011

Multiple congenital anomalies-hypotonia-seizures syndrome is caused by a mutation in PIGN

Gal Maydan; Iris Noyman; Adi Har-Zahav; Ziva Ben Neriah; Metsada Pasmanik-Chor; Adva Yeheskel; Adi Albin-Kaplanski; Idit Maya; Nurit Magal; Efrat Birk; Amos J. Simon; Ayelet Halevy; Gideon Rechavi; Mordechai Shohat; Rachel Straussberg; Lina Basel-Vanagaite

Background This study reports on a hitherto undescribed autosomal recessive syndrome characterised by dysmorphic features and multiple congenital anomalies together with severe neurological impairment, chorea and seizures leading to early death, and the identification of a gene involved in the pathogenesis of the disease. Methods Homozygosity mapping was performed using Affymetrix Human Mapping 250k NspI arrays. Sequencing of all coding exons of the candidate genes was performed with primer sets designed using the Primer3 program. Fluorescence activated cell sorting was performed using conjugated antibody to CD59. Staining, acquisition and analysis were performed on a FACSCalibur flow cytometer. Results Using homozygosity mapping, the study mapped the disease locus to 18q21.32–18q22.1 and identified the disease-causing mutation, c.2126G→A (p.Arg709Gln), in PIGN, which encodes glycosylphosphatidylinositol (GPI) ethanolamine phosphate transferase 1, a protein involved in GPI-anchor biosynthesis. Arginine at the position 709 is a highly evolutionarily conserved residue located in the PigN domain. The expression of GPI linked protein CD59 on fibroblasts from patients as compared to that in a control individual showed a 10-fold reduction in expression, confirming the pathogenic consequences of the mutation on GPI dependent protein expression. Conclusions The abundant expression of PIGN in various tissues is compatible with the diverse phenotypic features observed in the patients and with the involvement of multiple body systems. The presence of developmental delay, hypotonia, and epilepsy combined with multiple congenital anomalies, especially anorectal anomalies, should lead a clinician to suspect a GPI deficiency related disorder.


FEBS Journal | 2007

Gene silencing at the nuclear periphery

Sigal Shaklai; Ninette Amariglio; Gideon Rechavi; Amos J. Simon

The nuclear envelope (NE) is composed of inner and outer nuclear membranes (INM and ONM, respectively), nuclear pore complexes and an underlying mesh like supportive structure – the lamina. It has long been known that heterochromatin clusters at the nuclear periphery adjacent to the nuclear lamina, hinting that proteins of the lamina may participate in regulation of gene expression. Recent studies on the molecular mechanisms involved show that proteins of the nuclear envelope participate in regulation of transcription on several levels, from direct binding to transcription factors to induction of epigenetic histone modifications. Three INM proteins; lamin B receptor, lamina‐associated polypeptide 2β and emerin, were shown to bind chromatin modifiers and/or transcriptional repressors inducing, at least in one case, histone deacetylation. Emerin and another INM protein, MAN1, have been linked to down‐regulation of specific signaling pathways, the retino blastoma 1/E2F MyoD and transforming growth factor beta/bone morphogenic protein, respectively. Therefore, cumulative data suggests that proteins of the nuclear lamina regulate transcription by recruiting chromatin modifiers and transcription factors to the nuclear periphery. In this minireview we describe the recent literature concerning mechanisms of gene repression by proteins of the NE and suggest the hypothesis that the epigenetic ‘histone code’, dictating transcriptional repression, is ‘written’ in part, at the NE by its proteins. Finally, as aberrant gene expression is one of the mechanisms speculated to underlie the newly discovered group of genetic diseases termed nuclear envelopathies/laminopathies, elucidating the repressive role of NE proteins is a major challenge to both researchers and clinicians.


Annals of Neurology | 2006

Mutated nup62 causes autosomal recessive infantile bilateral striatal necrosis

Lina Basel-Vanagaite; Liora Muncher; Rachel Straussberg; Metsada Pasmanik-Chor; Michal Yahav; Limor Rainshtein; Christopher A. Walsh; Nurit Magal; Ellen Taub; Valerie Drasinover; Hanna Shalev; Revital Attia; Gideon Rechavi; Amos J. Simon; Mordechai Shohat

The objective of this study was to identify the gene causing autosomal recessive infantile bilateral striatal necrosis.


Cell Cycle | 2011

Restoring p53 active conformation by zinc increases the response of mutant p53 tumor cells to anticancer drugs

Rosa Puca; Lavinia Nardinocchi; Manuela Porru; Amos J. Simon; Gideon Rechavi; Carlo Leonetti; David Givol; Gabriella D'Orazi

Absence of p53 expression or expression of mutant p53 (mtp53) are common in human cancers and are associated with increased cancer resistance to chemo- and radiotherapy. Therefore, significant efforts towards pharmaceutical reactivation of defective p53 pathways are underway. We previously reported that, in HIPK2 knockdown background, p53 undergoes misfolding with inhibition of DNA binding and transcriptional activities that correlate with increased chemoresistance, and that zinc rescues wild-type p53 activity. Zinc has a crucial role in the biology of p53, in that p53 binds to DNA through a structurally complex domain stabilized by zinc atom. In this study, we explored the role of zinc in p53 reactivation in mutant p53-expressing cancer cells. We found that zinc re-established chemosensitivity in breast cancer SKBR3 (expressing R175H mutation) and glioblastoma U373MG (expressing R273H mutation) cell lines. Biochemical studies showed that zinc partly induced the transition of mutant p53 protein (reactive to conformation-sensitive PAb240 antibody for mutant conformation) into a functional conformation (reactive to conformation-sensitive PAb1620 antibody for wild-type conformation). Zinc-mediated p53 reactivation also reduced the mtp53/p73 interaction restoring both wtp53 and p73 binding to target gene promoters by ChIP assay with in vivo induction of wtp53 target gene expression, which rendered mutant p53 cells more prone to drug killing in vitro. Finally, zinc administration in U373MG tumor xenografts increased drug-induced tumor regression in vivo, which correlated with increased wild-type p53 protein conformation. These results show that the use of zinc might restore drug sensitivity and inhibit tumor growth by reactivating mutant p53.


The New England Journal of Medicine | 2013

A congenital neutrophil defect syndrome associated with mutations in VPS45

Thierry Vilboux; Atar Lev; May Christine V. Malicdan; Amos J. Simon; Päivi M Järvinen; Tomas Racek; Jacek Puchałka; Raman Sood; Blake Carrington; Kevin Bishop; James C. Mullikin; Marjan Huizing; Ben Zion Garty; Eran Eyal; Baruch Wolach; Ronit Gavrieli; Amos Toren; Michalle Soudack; Osama M. Atawneh; Tatiana Babushkin; Ginette Schiby; Andrew R. Cullinane; Camila Avivi; Sylvie Polak-Charcon; Iris Barshack; Ninette Amariglio; Gideon Rechavi; Jutte van der Werff ten Bosch; Yair Anikster; Christoph Klein

BACKGROUND Neutrophils are the predominant phagocytes that provide protection against bacterial and fungal infections. Genetically determined neutrophil disorders confer a predisposition to severe infections and reveal novel mechanisms that control vesicular trafficking, hematopoiesis, and innate immunity. METHODS We clinically evaluated seven children from five families who had neutropenia, neutrophil dysfunction, bone marrow fibrosis, and nephromegaly. To identify the causative gene, we performed homozygosity mapping using single-nucleotide polymorphism arrays, whole-exome sequencing, immunoblotting, immunofluorescence, electron microscopy, a real-time quantitative polymerase-chain-reaction assay, immunohistochemistry, flow cytometry, fibroblast motility assays, measurements of apoptosis, and zebrafish models. Correction experiments were performed by transfecting mutant fibroblasts with the nonmutated gene. RESULTS All seven affected children had homozygous mutations (Thr224Asn or Glu238Lys, depending on the childs ethnic origin) in VPS45, which encodes a protein that regulates membrane trafficking through the endosomal system. The level of VPS45 protein was reduced, as were the VPS45 binding partners rabenosyn-5 and syntaxin-16. The level of β1 integrin was reduced on the surface of VPS45-deficient neutrophils and fibroblasts. VPS45-deficient fibroblasts were characterized by impaired motility and increased apoptosis. A zebrafish model of vps45 deficiency showed a marked paucity of myeloperoxidase-positive cells (i.e., neutrophils). Transfection of patient cells with nonmutated VPS45 corrected the migration defect and decreased apoptosis. CONCLUSIONS Defective endosomal intracellular protein trafficking due to biallelic mutations in VPS45 underlies a new immunodeficiency syndrome involving impaired neutrophil function. (Funded by the National Human Genome Research Institute and others.).


Pediatric Research | 2005

Nuclear envelopathies : Raising the nuclear veil

Rra R.A. Somech; Sigal Shaklai; Ninette Amariglio; Gideon Rechavi; Amos J. Simon

The nuclear envelope separates the chromosomes from cytoplasm in eukaryotic cells and consists of three main domains: inner and outer nuclear membranes and nuclear pore complexes. The inner nuclear membrane maintains close associations with the underlying chromatin and nuclear lamina. For many years, the nuclear envelope was thought to function mainly as an architectural stabilizer of the nucleus, participating in assembly and disassembly processes during mitosis. However, recent findings demonstrate that nuclear envelope proteins are involved in fundamental nuclear functions, such as gene transcription and DNA replication, and that inherited or de novo mutated proteins cause human diseases, termed “nuclear envelopathies.” These findings emphasize the importance of understanding the functions of this cellular domain, in both physiologic and pathologic states. To date, mutations in the genes encoding the nuclear envelope proteins emerin, MAN1, lamin A/C, and lamin B receptor were found to cause nuclear envelopathies. The diseases that are caused by mutations in LMNA gene are collectively called “laminopathies.” Nuclear envelopathies have diverse clinical phenotypes, ranging from cardiac and skeletal myopathies to partial lipodystrophy, peripheral neuropathy, and premature aging. This raises the question of how do such ubiquitously expressed proteins give rise to tissue-specific disease phenotypes. One possible explanation is the involvement of nuclear envelope proteins in the regulation of gene transcription, a novel mechanism that has been the focus of research in our lab in recent years. In this review, we describe recent discoveries in the field of nuclear envelopathies and discuss current proposed pathophysiological mechanisms underlying these diseases.


Science Translational Medicine | 2015

Timely and spatially regulated maturation of B and T cell repertoire during human fetal development

Erez Rechavi; Atar Lev; Yu Nee Lee; Amos J. Simon; Yoav Yinon; Schlomo Lipitz; Ninette Amariglio; Boaz Weisz; Luigi D. Notarangelo; Raz Somech

Immunocompetence in the developing fetus is temporally and spatially regulated. Developing Immunity The adaptive immune response plays a critical role in protecting the body from both foreign pathogens and internal dangers such as cancer. However, little is known about how the immune system develops during human gestation. Rechavi et al. analyzed differences in B and T lymphocyte ontogeny from 12 to 26 weeks of gestational age. They found that B cell development precedes T cell development and that repertoire maturation is both temporally and spatially regulated. These data can be used as a baseline to improve immune function in developing fetuses and to assess the effects of therapeutic interventions. Insights into the ontogeny of the human fetal adaptive immune system are of great value for understanding immunocompetence of the developing fetus. However, to date, this has remained largely uncharted territory, in large part because blood samples from healthy, early gestation fetuses have been hard to come by. In a comprehensive study, we analyzed levels of T cell receptor excision circles (TRECs), signal-joint κ receptor excision circles (sjKRECs), and intron recombination signal sequence–K-deleting element (iRSS-Kde) rearrangement, and T and B lymphocyte repertoire clonality in human fetuses from 12 to 26 weeks of gestational age. Using next-generation sequencing, we analyzed the diversity and complexity of T cell receptor β (TRB) and immunoglobulin heavy chain (IGH) repertoires in four fetuses at 12, 13, 22, and 26 weeks of gestation and in healthy full-term infants. We report the progressive increase of TREC, sjKREC, and iRSS-Kde levels over time and confirm that B cell development precedes T cell development in the human fetus. Temporally and spatially regulated maturation of B and T cell repertoire diversity and complexity during human fetal development was observed, including evidence that immunoglobulin somatic hypermutation and class switch recombination occur already during intrauterine life. Our results help define physiological levels of immunodeficiency in premature infants and may serve as a reference for future studies aimed at investigating the impact of intrauterine pathologies on fetal immune development and function.

Collaboration


Dive into the Amos J. Simon's collaboration.

Top Co-Authors

Avatar

Gideon Rechavi

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Atar Lev

Sheba Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge