Gijs Joost Brouwer
Utrecht University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gijs Joost Brouwer.
Vision Research | 2005
R. van Ee; L.C.J. van Dam; Gijs Joost Brouwer
Voluntary control and conscious perception seem to be related: when we are confronted with ambiguous images we are in some cases and to some extent able to voluntarily select a percept. However, to date voluntary control has not been used in neurophysiological studies on the correlates of conscious perception, presumably because the dynamic of perceptual reversals was not suitable. We exposed the visual system to four ambiguous stimuli that instigate bi-stable perception: slant rivalry, orthogonal grating rivalry, house-face rivalry, and Necker cube rivalry. In the preceding companion paper [van Ee, R. (2005). Dynamics of perceptual bi-stability for stereoscopic slant rivalry and a comparison with grating, house-face, and Necker cube rivalry. Vision Research] we focussed on the temporal dynamics of the perceptual reversals. Here we examined the role of voluntary control in the dynamics of perceptual reversals. We asked subjects to attempt to hold percepts and to speed-up the perceptual reversals. The investigations across the four stimuli revealed qualitative similarities concerning the influence of voluntary control on the temporal dynamics of perceptual reversals. We also found differences. In comparison to the other rivalry stimuli, slant rivalry exhibits: (1) relatively long percept durations; (2) a relatively clear role of voluntary control in modifying the percept durations. We advocate that these aspects, alongside with its metrical (quantitative) aspects, potentially make slant rivalry an interesting tool in studying the neural underpinnings of visual awareness.
Journal of Vision | 2008
P.C. Klink; R. van Ee; M. M. Nijs; Gijs Joost Brouwer; André J. Noest; R.J.A. van Wezel
At the onset of bistable stimuli, the brain needs to choose which of the competing perceptual interpretations will first reach awareness. Stimulus manipulations and cognitive control both influence this choice process, but the underlying mechanisms and interactions remain poorly understood. Using intermittent presentation of bistable visual stimuli, we demonstrate that short interruptions cause perceptual reversals upon the next presentation, whereas longer interstimulus intervals stabilize the percept. Top-down voluntary control biases this process but does not override the timing dependencies. Extending a recently introduced low-level neural model, we demonstrate that percept-choice dynamics in bistable vision can be fully understood with interactions in early neural processing stages. Our model includes adaptive neural processing preceding a rivalry resolution stage with cross-inhibition, adaptation, and an interaction of the adaptation levels with a neural baseline. Most importantly, our findings suggest that top-down attentional control over bistable stimuli interacts with low-level mechanisms at early levels of sensory processing before perceptual conflicts are resolved and perceptual choices about bistable stimuli are made.
The Journal of Neuroscience | 2007
Gijs Joost Brouwer; Raymond van Ee
We investigated the role of retinotopic visual cortex and motion-sensitive areas in representing the content of visual awareness during ambiguous structure-from-motion (SFM), using functional magnetic resonance imaging (fMRI) and multivariate statistics (support vector machines). Our results indicate that prediction of perceptual states can be very accurate for data taken from dorsal visual areas V3A, V4D, V7, and MT+ and for parietal areas responsive to SFM, but to a lesser extent for other visual areas. Generalization of prediction was possible, because prediction accuracy was significantly better than chance for both an unambiguous stimulus and a different experimental design. Detailed analysis of eye movements revealed that strategic and even encouraged beneficial eye movements were not the cause of the prediction accuracy based on cortical activation. We conclude that during perceptual rivalry, neural correlates of visual awareness can be found in retinotopic visual cortex, MT+, and parietal cortex. We argue that the organization of specific motion-sensitive neurons creates detectable biases in the preferred direction selectivity of voxels, allowing prediction of perceptual states. During perceptual rivalry, retinotopic visual cortex, in particular higher-tier dorsal areas like V3A and V7, actively represents the content the visual awareness.
The Journal of Neuroscience | 2005
Gijs Joost Brouwer; Raymond van Ee; Jens Schwarzbach
Using event-related functional magnetic resonance imaging, we studied the activation correlating with the awareness of stereoscopic depth using a bistable slanted surface (slant rivalry). Bistability resulted from incongruence between two slant-defining cues: binocular disparity and monocular perspective. The stimulus was perceived as alternating between the perspective-dominated percept (monocular depth) and the disparity-dominated percept (stereopsis), while sensory input remained constant, enabling us to study changes in awareness of depth associated with either cue. Transient activation relating to perceptual alternations was found bilaterally in the caudal part of the intraparietal sulcus, in the right-hemispheric anterior intraparietal sulcus, within visual area V4d-topo, and inferior to area MT+. Transient activation correlating specifically with alternations toward the disparity-dominated percept was found in a number of visual areas, including dorsal visual areas V3A, V7, and V4d-topo and visual areas MT+ and lateral occipital complex. No activation was found for alternations toward the perspective-dominated percept. Our results show that of all visual areas responsive to disparity-defined depth, V4d-topo shows the most robust signal changes correlating with the instigation of stereoscopic depth awareness (stereopsis).
Vision Research | 2006
Gijs Joost Brouwer; Raymond van Ee
We investigated the influence of changing physical parameters and task on bistable perception of an ambiguously rotating sphere (SFM). Increasing dot-density and velocity decreased the duration of perceptual phases during both passive viewing and voluntary control exertion. Our main finding is that voluntary control of perception depends on the physical parameters constituting the stimulus. This dependency places important constraints on the mechanisms mediating voluntary control as these mechanisms cannot operate independently of stimulus characteristics. In addition, local asymmetries in dot-densities can trigger alternations towards the most salient direction, which is not necessarily associated with largest number of dots: competition between perceptual interpretations during SFM appears to occur between surface-based representations rather than between individual elements. Finally, we show that voluntary control remains effective, even when attentive tracking of individual stimulus elements is no longer possible.
PLOS ONE | 2009
Gijs Joost Brouwer; Frank Tong; Peter Hagoort; Raymond van Ee
We employed a parametric psychophysical design in combination with functional imaging to examine the influence of metric changes in perceptual incongruence on perceptual alternation rates and cortical responses. Subjects viewed a bistable stimulus defined by incongruent depth cues; bistability resulted from incongruence between binocular disparity and monocular perspective cues that specify different slants (slant rivalry). Psychophysical results revealed that perceptual alternation rates were positively correlated with the degree of perceived incongruence. Functional imaging revealed systematic increases in activity that paralleled the psychophysical results within anterior intraparietal sulcus, prior to the onset of perceptual alternations. We suggest that this cortical activity predicts the frequency of subsequent alternations, implying a putative causal role for these areas in initiating bistable perception. In contrast, areas implicated in form and depth processing (LOC and V3A) were sensitive to the degree of slant, but failed to show increases in activity when these cues were in conflict.
Journal of Vision | 2010
Raymond van Ee; Loes C. J. Dam; Gijs Joost Brouwer; Nienke J. H. Korsten
Archive | 2006
R. van Ee; Jan Brascamp; Gijs Joost Brouwer; Loes van Dam
Journal of Vision | 2010
Gijs Joost Brouwer; Raymond van Ee
Social Neuroscience | 2003
R. van Ee; Loes van Dam; Gijs Joost Brouwer