R. van Ee
Utrecht University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by R. van Ee.
Vision Research | 2005
R. van Ee; L.C.J. van Dam; Gijs Joost Brouwer
Voluntary control and conscious perception seem to be related: when we are confronted with ambiguous images we are in some cases and to some extent able to voluntarily select a percept. However, to date voluntary control has not been used in neurophysiological studies on the correlates of conscious perception, presumably because the dynamic of perceptual reversals was not suitable. We exposed the visual system to four ambiguous stimuli that instigate bi-stable perception: slant rivalry, orthogonal grating rivalry, house-face rivalry, and Necker cube rivalry. In the preceding companion paper [van Ee, R. (2005). Dynamics of perceptual bi-stability for stereoscopic slant rivalry and a comparison with grating, house-face, and Necker cube rivalry. Vision Research] we focussed on the temporal dynamics of the perceptual reversals. Here we examined the role of voluntary control in the dynamics of perceptual reversals. We asked subjects to attempt to hold percepts and to speed-up the perceptual reversals. The investigations across the four stimuli revealed qualitative similarities concerning the influence of voluntary control on the temporal dynamics of perceptual reversals. We also found differences. In comparison to the other rivalry stimuli, slant rivalry exhibits: (1) relatively long percept durations; (2) a relatively clear role of voluntary control in modifying the percept durations. We advocate that these aspects, alongside with its metrical (quantitative) aspects, potentially make slant rivalry an interesting tool in studying the neural underpinnings of visual awareness.
Journal of Vision | 2008
P.C. Klink; R. van Ee; M. M. Nijs; Gijs Joost Brouwer; André J. Noest; R.J.A. van Wezel
At the onset of bistable stimuli, the brain needs to choose which of the competing perceptual interpretations will first reach awareness. Stimulus manipulations and cognitive control both influence this choice process, but the underlying mechanisms and interactions remain poorly understood. Using intermittent presentation of bistable visual stimuli, we demonstrate that short interruptions cause perceptual reversals upon the next presentation, whereas longer interstimulus intervals stabilize the percept. Top-down voluntary control biases this process but does not override the timing dependencies. Extending a recently introduced low-level neural model, we demonstrate that percept-choice dynamics in bistable vision can be fully understood with interactions in early neural processing stages. Our model includes adaptive neural processing preceding a rivalry resolution stage with cross-inhibition, adaptation, and an interaction of the adaptation levels with a neural baseline. Most importantly, our findings suggest that top-down attentional control over bistable stimuli interacts with low-level mechanisms at early levels of sensory processing before perceptual conflicts are resolved and perceptual choices about bistable stimuli are made.
Perception | 1999
R. van Ee; Martin S. Banks; Benjamin T. Backus
When a small frontoparallel surface (a test strip) is surrounded by a larger slanted surface (an inducer), the test strip is perceived as slanted in the direction opposite to the inducer. This has been called the depth-contrast effect, but we call it the slant-contrast effect. In nearly all demonstrations of this effect, the inducers slant is specified by stereoscopic signals; and other signals, such as the texture gradient, specify that it is frontoparallel. We present a theory of slant estimation that determines surface slant via linear combination of various slant estimators; the weight of each estimator is proportional to its reliability. The theory explains slant contrast because the absolute slant of the inducer and the relative slant between test strip and inducer are both estimated with greater reliability than the absolute slant of the test strip. The theory predicts that slant contrast will be eliminated if the signals specifying the inducers slant are consistent with one another. It also predicts reversed slant contrast if the inducers slant is specified by nonstereoscopic signals rather than by stereo signals. These predictions were tested and confirmed in three experiments. The first showed that slant contrast is greatly reduced when the stereo-specified and nonstereo-specified slants of the inducer are made consistent with one another. The second showed that slant contrast is eliminated altogether when the stimulus consists of real planes rather than images on a display screen. The third showed that slant contrast is reversed when the nonstereo-specified slant of the inducer varies and the stereo-specified slant is zero. We conclude that slant contrast is a byproduct of the visual systems reconciliation of conflicting information while it attempts to determine surface slant.
Vision Research | 1996
R. van Ee; Casper J. Erkelens
We systematically analyse the binocular disparity field under various eye, head and stimulus positions and orientations. From the literature we know that certain classes of disparity which involve the entire disparity field (such as those caused by horizontal lateral shift, differential rotation, horizontal scale and horizontal shear between the entire half-images of a stereogram) lead to relatively poor depth perception in the case of limited observation periods. These classes of disparity are found to be similar to the classes of disparities which are brought about by eye and head movements. Our analysis supports the suggestion that binocular depth perception is based primarily (for the first few hundred milliseconds) on classes of disparity that do not change as a result of ego-movement.
Vision Research | 1996
R. van Ee; Casper J. Erkelens
We investigated Werners binocular depth-contrast effect. Subjects viewed stereograms consisting of a test pattern and an inducing pattern. The half-images of the inducing pattern were either horizontally scaled or sheared relative to each other. Subjects judged the (induced) perceived slant of the test pattern. We were interested in what influence the spatial configuration of the test pattern and the inducing pattern had on the depth-contrast effect. We conclude that the depth-contrast effect is a global effect. In other words, it is not restricted to the location of the inducing pattern. The effect decreases with distance, however, in an anisotropic way. The depth-contrast effect was present most prominently when the test pattern was positioned in the direction along the slant (rotation) axis of the inducing pattern. We suggest that Werners depth-contrast effect can be explained by the (previously reported) findings that: (1) stereopsis is relatively insensitive to whole-field horizontal scale and shear; and (2) stereopsis is very sensitive to horizontal scale and shear of two stimuli relative to each other.
Philosophical Transactions of the Royal Society B | 2012
P.C. Klink; R.J.A. van Wezel; R. van Ee
Ambiguous visual stimuli provide the brain with sensory information that contains conflicting evidence for multiple mutually exclusive interpretations. Two distinct aspects of the phenomenological experience associated with viewing ambiguous visual stimuli are the apparent stability of perception whenever one perceptual interpretation is dominant, and the instability of perception that causes perceptual dominance to alternate between perceptual interpretations upon extended viewing. This review summarizes several ways in which contextual information can help the brain resolve visual ambiguities and construct temporarily stable perceptual experiences. Temporal context through prior stimulation or internal brain states brought about by feedback from higher cortical processing levels may alter the response characteristics of specific neurons involved in rivalry resolution. Furthermore, spatial or crossmodal context may strengthen the neuronal representation of one of the possible perceptual interpretations and consequently bias the rivalry process towards it. We suggest that contextual influences on perceptual choices with ambiguous visual stimuli can be highly informative about the neuronal mechanisms of context-driven inference in the general processes of perceptual decision-making.
Experimental Brain Research | 2008
Dagmar Wismeijer; R. van Ee; Casper J. Erkelens
We studied the influence of perceived surface orientation on vergence accompanying a saccade while viewing an ambiguous stimulus. We used the slant rivalry stimulus, in which perspective foreshortening and disparity specified opposite surface orientations. This rivalrous configuration induces alternations of perceived surface orientation, while the slant cues remain constant. Subjects were able to voluntarily control their perceptual state while viewing the ambiguous stimulus. They were asked to make a saccade across the perceived slanted surface. Our data show that vergence responses closely approximated the vergence response predicted by the disparity cue, irrespective of voluntarily controlled perceived orientation. However, comparing the data obtained while viewing the ambiguous stimulus with data from an unambiguous stimulus condition (when disparity and perspective specified similar surface orientations) revealed an effect of perspective cues on vergence. Collectively our results show that depth cues rather than perceived depth govern vergence.
The Journal of Physiology | 2005
H.E.M. den Ouden; R. van Ee; E.H.F. de Haan
The spatial differences between the two retinal images, called binocular disparities, can be used to recover the three‐dimensional (3D) aspects of a scene. The computation of disparity depends upon the correct identification of corresponding features in the two images. Understanding what image features are used by the brain to solve this binocular matching problem is an important issue in research on stereoscopic vision. The role of colour in binocular vision is controversial and it has been argued that colour is ineffective in achieving binocular vision. In the current experiment subjects were required to indicate the amount of perceived depth. The stimulus consisted of an array of fronto‐parallel bars uniformly distributed in a constant sized volume. We studied the perceived depth in those 3D stimuli by manipulating both colour (monochrome, trichrome) and luminance (congruent, incongruent). Our results demonstrate that the amount of perceived depth was influenced by colour, indicating that the visual system uses colour to achieve binocular matching. Physiological data have revealed cortical cells in macaque V2 that are tuned both to binocular disparity and to colour. We suggest that one of the functional roles of these cells may be to help solve the binocular matching problem.
Brain Research | 2009
Mathijs Raemaekers; M.E. van der Schaaf; R. van Ee; R.J.A. van Wezel
When observing bistable stimuli, the percept can change in the absence of changes in the stimulus itself. When intermittently presenting a bistable stimulus, the number of perceptual alternations can increase or decrease, depending on the duration of the period that the stimulus is removed from screen between stimulus presentations (off-period). Longer off-periods lead to stabilization of the percept, while short off-periods produce perceptual alternations. Here we compare fMRI brain activation across percept repetitions and alternations when observing an intermittently presented ambiguously rotating structure from motion sphere. In the first experimental session, subjects were requested to voluntarily control the percept into either a repeating or an alternating perceptual regime at a single off-period. In a consecutive session, subjects observed the sphere uninstructed, and reported alternations and repetitions. The behavioral data showed that there were marked individual biases for observing the sphere as either repeating or alternating. The fMRI data showed activation differences between alternating and repeating perceptual regimes in an extensive network that included parietal cortex, dorsal premotor area, dorsolateral prefrontal cortex, supplementary motor area, insula, and cerebellum. However, these activation differences could all be explained by intersubject differences in the bias for one of the two perceptual regimes. The stronger the bias was for a particular perceptual regime, the less activation and vice versa. We conclude that widespread activation differences between perceptual regimes can be accounted for by differences in the perceptual bias for one of the two regimes.
Biological Cybernetics | 2006
André J. Noest; R. van Ee; A.V. van den Berg
Any computation of metric surface structure from horizontal disparities depends on the viewing geometry, and analysing this dependence allows us to narrow down the choice of viable schemes. For example, all depth-based or slant-based schemes (i.e. nearly all existing models) are found to be unrealistically sensitive to natural errors in vergence. Curvature-based schemes avoid these problems and require only moderate, more robust view-dependent corrections to yield local object shape, without any depth coding. This fits the fact that humans are strikingly insensitive to global depth but accurate in discriminating surface curvature. The latter also excludes coding only affine structure. In view of new adaptation results, our goal becomes to directly extract retinotopic fields of metric surface curvatures (i.e. avoiding intermediate disparity curvature).To find a robust neural realisation, we combine new exact analysis with basic neural and psychophysical constraints. Systematic, step-by-step ‘design’ leads to neural operators which employ a novel family of ‘dynamic’ receptive fields (RFs), tuned to specific (bi-)local disparity structure. The required RF family is dictated by the non-Euclidean geometry that we identify as inherent in cyclopean vision. The dynamic RF-subfield patterns are controlled via gain modulation by binocular vergence and version, and parameterised by a cell-specific tuning to slant. Our full characterisation of the neural operators invites a range of new neurophysiological tests. Regarding shape perception, the model inverts widely accepted interpretations: It predicts the various types of errors that have often been mistaken for evidence against metric shape extraction.