Gil-Jae Yim
Kangwon National University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gil-Jae Yim.
Journal of Environmental Management | 2012
Hocheol Song; Gil-Jae Yim; Sang-Woo Ji; Carmen Mihaela Neculita; Taewoon Hwang
Pilot-scale field-testing of passive bioreactors was performed to evaluate the efficiency of a mixture of four substrates (cow manure compost, mushroom compost, sawdust, and rice straw) relative to mushroom compost alone, and of the effect of the Fe/Mn ratio, during the treatment of acid mine drainage (AMD) over a 174-day period. Three 141 L columns, filled with either mushroom compost or the four substrate mixture (in duplicate), were set-up and fed with AMD from a closed mine site, in South Korea, using a 4-day hydraulic retention time. In the former bioreactor, effluent deterioration was observed over 1-2 months, despite the good efficiency predicted by the physicochemical characterization of mushroom compost. Steady state effluent quality was then noted for around 100 days before worsening in AMD source water occurred in response to seasonal variations in precipitation. Such changes in AMD quality resulted in performance deterioration in all reactors followed by a slow recovery toward the end of testing. Both substrates (mushroom compost and mixtures) gave satisfactory performance in neutralizing pH (6.1-7.8). Moreover, the system was able to consistently reduce sulfate from day 49, after the initial leaching out from organic substrates. Metal removal efficiencies were on the order of Al (∼100%) > Fe (68-92%) > Mn (49-61%). Overall, the mixed substrates showed comparable performance to mushroom compost, while yielding better effluent quality upon start-up. The results also indicated mushroom compost could release significant amounts of Mn and sulfate during bioreactor operation.
Chemosphere | 2011
Carmen Mihaela Neculita; Gil-Jae Yim; Gooyong Lee; Sang-Woo Ji; Jin Woong Jung; Hyunsung Park; Hocheol Song
Bioreactors are one possible best sustainable technology to address the mine-impacted water problems. Several prospective substrates (mushroom compost, cow manure, sawdust, wood chips, and cut rice straw) were characterized for their ability to serve as a source of food and energy for sulfate-reducing bacteria. Twenty bench-scale batch bioreactors were then designed and set up to investigate relative effectiveness of various mixtures of substrates to that of mushroom compost, the most commonly used substrate in field bioreactors, for treating mine drainage with acidic (pH 3) and moderate pH (pH 6). Overall, reactive mixtures showed satisfactory performances in generating alkalinity, reducing sulfate and removing metals (Al>Fe>Mn) (up to 100%) at both pH conditions, for all substrates. The mixture of sawdust and cow manure was found as the most effective whereas the mixture containing 40% cut rice straw gave limited efficiency, suggesting organic carbon released from this substrate is not readily available for biodegradation under anaerobic conditions. The mushroom compost-based bioreactors released significant amount of sulfate, which may raise a more concern upon the start-up of field-scale bioreactors. The correlation between the extent of sulfate reduction and dissolved organic carbon/SO(4)(2-) ratio was weak and this indicates that the type of dissolved organic carbon plays a more important role in sulfate reduction than the absolute concentration and that the ratio is not sensitive enough to properly describe the relative effectiveness of substrate mixtures.
Journal of Hazardous Materials | 2011
Joo Sung Ahn; Hocheol Song; Gil-Jae Yim; Sang Woo Ji; Jae-gon Kim
A cover system for mine tailings with a solidified layer (called an engineered hardpan) was developed in this study to reduce water infiltration, acid generation and sulfide oxidation. Hydrated lime and waterglass were used to produce calcium silicate, which can serve as a binder when constructing a hardpan layer. The compressive strength of each solidified/stabilized material was found to be sufficient in the lab, and the amounts of heavy metals were significantly reduced in chemical leaching tests. Various characteristics of tailings may affect the layers mechanical strength early on, but a long curing period is capable of compensating for these effects. Heavy metals were stabilized as carbonate-bound phases and sulfide minerals were surrounded by calcium silicate matrix, thereby preventing further reaction. To evaluate the field performance of the system, a hardpan layer was installed on top of tailings on a pilot scale. Leachate with high salt content was generated in the tailings layer in the early stages of monitoring, but after approximately 6 months, the objective was achieved as the hardpan layer gradually stabilized. Notably, during the heavy rainfall season of the later monitoring stage, water infiltration was continuously prevented by the system.
Science of The Total Environment | 2016
Chamteut Oh; Young-Soo Han; Jin Hee Park; Songmin Bok; Young-Wook Cheong; Gil-Jae Yim; Sang-Woo Ji
Acid mine drainage (AMD) generated from mining activities has been recognized as a serious problem due to its increased acidity and high concentration of heavy metals. In this research, a feasibility test of the selective precipitation (SP) process was performed using AMD discharged from a currently operating mine in Korea for the purpose of minimizing the environmental impact of AMD. For the SP process, a pilot scale equipment (100L reaction tank) was used in field and among various metals, Cu and Zn were the target metals. Through the research, it was confirmed that AMD from an operating mine has two disadvantages of being applied to the SP: altering water quality and unexpected inclusion of clay debris. Despite unfavorable conditions, Cu and Zn precipitate of 80% purity with 90% precipitation rate was able to be obtained from 1.4L/min (2.0tons/day) AMD. The recovered precipitates were identified as amorphous CuS and ZnS with small amounts of impurities (Si minerals, CuFeS2, and Fe/Al hydroxide). The strategies to reduce these impurities were also discussed. Recovery rate, which is the amount of precipitate collected per unit volume of AMD, was proposed as an indicator to evaluate the working efficiency of the SP process. It was confirmed that the recovery rate was strongly dependent on flow rate and dose of coagulant. The results of this study may be helpful in reducing the potential complications which occurs when SP is applied on field.
Environmental Technology | 2016
Chamteut Oh; Sang-Woo Ji; Young-Wook Cheong; Gil-Jae Yim; Ji-hye Hong
ABSTRACT This research focused on the optimum design of a cascade aerator to enhance the efficiency of an oxidation pond in a passive treatment system for remediating ferruginous mine drainage. For this purpose, various aeration experiments with aerators of different drop heights (0–4 m) and formations (types A and B) were executed on mine drainage. Type A simply drops the mine drainage into the oxidation pond while type B sprays the mine drainage and retains it for 8 min in each step. The efficiency enhancement of the oxidation pond was strongly dependent on the increase in pH and DO of the mine drainage discharged into the pond. The water quality improved with the increase in drop height but especially showed better effect with type B. The reasons for this result were attributed to the increase of contact surface and retention time of the mine drainage. The cascade aerator, therefore, should be designed to be as high as possible with the assistance of spraying form and retention time of the mine drainage to maximize the efficiency of the oxidation pond. These effects could be evaluated by calculating required areas of the oxidation pond for 95% of Fe2+ oxidation.
Environmental Earth Sciences | 2015
Joo Sung Ahn; Sang-Woo Ji; Yong-Chan Cho; Seung-Jun Youm; Gil-Jae Yim
During large constructions of roads or structures, unexpected acid rock drainage (ARD) can be caused by local mineralization containing sulfides in the geology. The potential of ARD occurrence of a certain area sometimes must be assessed before initiation of any engineering earth works. However, it is difficult to assess the entire area through collecting rock samples and predicting the potential by laboratory tests, such as the acid–base accounting method. In this study, a new prediction protocol using a geochemical exploration survey technique of stream sediment is proposed. Sediment samples were collected at the case study area where a large development is expected in the future, and the contents of some major and heavy metal elements were compared according to the major geologies of the sampling points. The modified geoaccumulation indices (Igeo) of Fe, Pb and As could indicate a possible zone of pyrophyllite mineralization, which may cause the occurrence of ARD at the study area. Using the enrichment index of the three elements relative to the median values of the area, a high potential zone of ARD could be designated, which was in agreement with the laboratory ARD prediction tests of the rock samples. In the other areas with different mineralization processes, other metallic elements can be selected as indicators of the ARD potential. Likewise, the potential of the occurrence of ARD at an area can be assessed by evaluating the geochemical distributions and drawing the indicator elements for ARD through a stream sediment survey.
Water Research | 2014
Gil-Jae Yim; Young-Wook Cheong; Ji-hye Hong; Won Hur
A vertical flow reactor (VFR) has been suggested for remediation of ferruginous mine drainage that passes down through an accreting bed of ochre. However, a VFR has a limited operation time until the system begins to overflow. In this study, a mathematical model was developed as a part of the effort to explore the operation of a VFR, showing dynamic changes in the head differences, ochre depths, and Fe(II)/Fe(III) concentrations in the effluent flow. The analysis showed that VFR operation time extended from 148.5 days to 163 days in an equally divided and to 168.4 days in asymmetrically (0.72:0.28) divided two-compartment VFR, suggesting that an optimum compartment ratio exists that maximizes the VFR operation time. A constant head filtration in the first compartment maximized filtration efficiency and thus prolonged VFR longevity in the two-compartment VFR. Fe(II) oxidation and ochre formation should be balanced with the permeability of the ochre bed to maximize the VFR operation time and minimize the residual Fe(II) in the effluent. Accelerated Fe(II) oxidation affected the optimum ratio of the compartment area and reduced the residual Fe(II) in the effluent. The VFR operation time can be prolonged significantly from 764 days to 3620 days by increasing the rate of ochre formation, much more than by accelerating the Fe(II) oxidation. During the prolonged VFR operation, ochre formed largely in the first compartment, while overflowing mine water with reduced iron content was effectively filtered in the second compartment. These results not only provide a better understanding of VFR operation but also suggest the direction of evolution of two-compartment VFR toward a compact and highly efficient facility integrated with an aerated cascade and with automatic coagulant feeding.
Environmental Monitoring and Assessment | 2017
Chamteut Oh; Sang-Woo Ji; Gil-Jae Yim; Young-Wook Cheong
The main purpose of this research was to evaluate the geochemical properties of rocks for a single indicator of acid-forming potential. The indicators, such as net acid generation (NAG), NAG pH and total S, were applied to 312 rock samples of various geological characteristics. Additional indicators, such as a Modified NAG pH, paste pH and available acid neutralizing capacity (ANC), were applied to 22 selected samples. Among them, NAG pH was considered the most plausible single indicator in evaluating acid-forming potential, as it is simple to measure, widely applicable to various samples and can be used to estimate the NAG value. The acid-forming potential of 287 samples (92% of samples examined in this research) was classified as either non-acid forming (NAF) or potentially acid forming (PAF) by NAG pH, with an NAF criteria of <3.21 and PAF of >4.52. The NAG pH was also a good estimate of the risk of short-term acid release when combined with paste pH information. However, application of NAG pH to coal mine wastes, with high organic carbon contents, produced erroneous results due to the generation of organic acid during the NAG test. In this research, a Modified NAG pH was assessed as an alternative to NAG pH in such situations.
Environmental Earth Sciences | 2014
Dong-Kil Lee; Gil-Jae Yim
A computational flow analysis was carried out to identify the retention time and flow distribution characteristics depending on the shape and depth of an oxidation pond. To evaluate the flow characteristics and efficiency of the oxidation pond with various shapes, the shape of the oxidation pond was defined by its horizontal and vertical deformation. The flow characteristics of the oxidation pond were found to be independent of the direction of the horizontal deformation angle, but dependent on the magnitude of the vertical deformation angle. The larger the vertical deformation angle, the stronger the short circulation of the mine drainage and the lower the inflow exchange efficiency in the oxidation pond. Moreover, the efficiency of the oxidation pond was increased when the dip angle direction of the pond was the same as that of the flow and the dip angle of the pond was similar to the velocity contour.
Journal of Hazardous Materials | 2018
Chamteut Oh; Sang-Woo Ji; Young-Wook Cheong; Gil-Jae Yim
In this research, an electrochemical wastewater treatment system, powered through the conversion of temperature difference into energy, was designed. The wastewater treatment system was applied to drainage flowing from two different mines, one contaminated by arsenic (As), the other ferrous iron (Fe2+). Arsenic was adsorbed on, or co-precipitated with, iron hydroxide generated from iron electrodes. A pseudo second order model well described the tendency for As removal. Ferrous iron oxidation occurred directly on graphite electrodes and followed a first order reaction model. The efficiency of As and Fe2+ removal was up to 99.7% and 97.9%, respectively. The rate constants for each model were proportional to given temperature differences, as the relationship between current generation and temperature difference was linear. Economic evaluation of the wastewater treatment system was performed by comparing the predicted cost of the thermocouples under particular environmental conditions. The thermocouple technology currently available could be applied to wastewater treatment for hot springs with high temperatures and high As concentrations. The applicability of the system to low temperature wastewaters will expand as energy production capacity per unit cost of thermocouples increases, as occurred with the photovoltaic and heat pump systems currently in use.