Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hocheol Song is active.

Publication


Featured researches published by Hocheol Song.


Water Research | 2009

DEFLUORIDATION FROM AQUEOUS SOLUTIONS BY GRANULAR FERRIC HYDROXIDE (GFH)

Eva Kumar; Amit Bhatnagar; Min-Kyu Ji; Woosik Jung; Sang-Hun Lee; Sun Joon Kim; Hocheol Song; Jaeyoung Choi; Jung Seok Yang; Byong-Hun Jeon

This research was undertaken to evaluate the feasibility of granular ferric hydroxide (GFH) for fluoride removal from aqueous solutions. Batch experiments were performed to study the influence of various experimental parameters such as contact time (1 min-24h), initial fluoride concentration (1-100 mgL(-1)), temperature (10 and 25 degrees C), pH (3-12) and the presence of competing anions on the adsorption of fluoride on GFH. Kinetic data revealed that the uptake rate of fluoride was rapid in the beginning and 95% adsorption was completed within 10 min and equilibrium was achieved within 60 min. The sorption process was well explained with pseudo-first-order and pore diffusion models. The maximum adsorption capacity of GFH for fluoride removal was 7.0 mgg(-1). The adsorption was found to be an endothermic process and data conform to Langmuir model. The optimum fluoride removal was observed between pH ranges of 4-8. The fluoride adsorption was decreased in the presence of phosphate followed by carbonate and sulphate. Results from this study demonstrated potential utility of GFH that could be developed into a viable technology for fluoride removal from drinking water.


Water Research | 2010

Halonitromethane formation potentials in drinking waters.

Jia Hu; Hocheol Song; Jesse W. Addison; Tanju Karanfil

Halonitromethanes (HNMs) are highly cyto- and genotoxic nitrogenous disinfection by-products (DBPs) that have been detected in some water distribution systems. In this study, a systematic investigation was conducted to examine the formation potential of HNMs in drinking waters under different oxidation conditions. Formation potential tests of samples obtained from various drinking water sources showed that ozonation-chlorination produced the highest HNM yields followed by in the order of chlorination, ozonation-chloramination, and chloramination. Similar or higher HNM yields were observed in the treated waters (i.e., after conventional water treatment) than in the raw waters, indicating that hydrophilic natural organic matter (NOM) components that are not effectively removed by conventional treatment processes are likely the main precursors of HNMs. This was further confirmed by examining HNM formation potentials of NOM fractions obtained with resin fractionation. Hydrophilic NOM fractions (HPI) showed significantly higher HNM yields than hydrophobic (HPO) and transphilic (TPH) fractions. The correlation analysis of HNM formation potentials during ozonation-chlorination with various water quality parameters showed the best correlation between the HNM yields and the ratio of dissolved organic carbon to dissolved organic nitrogen concentrations in the water samples tested.


Environmental Science & Technology | 2010

Comparative analysis of halonitromethane and trihalomethane formation and speciation in drinking water: the effects of disinfectants, pH, bromide, and nitrite.

Jia Hu; Hocheol Song; Tanju Karanfil

A bench-scale study was performed to investigate formation and speciation of halonitromethanes (HNMs) in raw and treated waters obtained from a drinking water treatment plant. HNM species were measured after chlorination, ozonation-chlorination, chloramination, and ozonation-chloramination, and compared with trihalomethanes (THMs). Pre-ozonation before chlorination resulted in enhanced HNM formation, producing trihalogenated HNMs as major species. Formation of THMs showed very a different formation pattern from HNM formation such that it was much higher in the raw than the treated water, and decreased after pre-ozonation. These findings indicated that precursors and formation pathways for HNMs and THMs are not the same. Increases in pH and bromide concentrations increased HNM and THM formation during ozonation-chlorination and THM formation during chlorination. The bromide effect shifted the formation of HNMs and THMs toward brominated species, with its impact being greater in the treated than raw water. On the other hand, there was no pH or bromide effect on HNM formation during chlorination. The presence of nitrite increased HNM formation under both chlorination and ozonation-chlorination conditions, but it had no influence on THM formation. HNM formation during ozonation-chloramination remained about 1 microg/L level even at the highest bromide and nitrite concentrations. Monochloramination alone did not form any measurable HNMs. The results indicated that the use of chloramine can be an effective way to minimize HNM formation at typical drinking water treatment conditions.


Energy and Environmental Science | 2011

Enhancement of fermentative bioenergy (ethanol/hydrogen) production using ultrasonication of Scenedesmus obliquusYSW15 cultivated in swine wastewater effluent

Jeong-A Choi; Jae-Hoon Hwang; Brian A. Dempsey; Reda A.I. Abou-Shanab; Booki Min; Hocheol Song; Dae Sung Lee; Jung Rae Kim; Yunchul Cho; Seungkwan Hong; Byong-Hun Jeon

The influence of ultrasonication pretreatment on fermentative bioenergy [ethanol/hydrogen (H2)] production from a newly isolated microalgae biomass (Scenedesmus obliquusYSW15) was investigated. S. obliquusYSW15 biomass was sonicated for 0 min (control), 5 min (short-term treatment), 15 and 60 min (long-term treatment), which caused different states of cell lysis for microbial fermentation. Long-term sonication significantly damaged the microalgal cell integrity, which subsequently enhanced the bioenergy production. The accumulative bioenergy (ethanol/hydrogen) production after long-term sonication was almost 7 times higher than that after short-term treatment or the control. The optimal ratio of microalgal biomass to anaerobic inoculum for higher bioenergy production was 1:1. Microscopic analyses with an energy-filtering transmission electron microscope (EF-TEM) and an atomic force microscope (AFM) collectively indicated that cells were significantly damaged during sonication and that the carbohydrates diffused out of the microalgae interiors and accumulated on the microalgae surfaces and/or within the periplasm, which led to enhanced bioaccessibility and bioavailability of the biomass. These results demonstrate that ultrasonication is an effective pretreatment method for enhancing the fermentative bioenergy production from microalgal biomass.


Chemosphere | 2012

The effects of pH, bromide and nitrite on halonitromethane and trihalomethane formation from amino acids and amino sugars

Junhong Shan; Jia Hu; S. Sule Kaplan-Bekaroglu; Hocheol Song; Tanju Karanfil

In this study, the effects of pH, bromide and nitrite on the formation of halonitromethanes (HNMs) and trihalomethanes (THMs) from eight amino acids (glycine, alanine, serine, cysteine, aspartic acid, glutamic acid, lysine and histidine) and four amino sugars (glucosamine, galactosamine, N-acetylglucosamine and N-acetylneuraminic acid) were examined for chlorination and ozonation followed by chlorination. During ozonation-chlorination, two amino acids, glycine and lysine, exhibited distinctly higher HNM formation than the other compounds. The formation of HNMs was higher at pH 8 than 6. Glycine and lysine also produced higher levels of THMs than the other compounds at pH 8. The presence of nitrite resulted in an increase in HNM formation. The presence of bromide increased the HNM formation, especially brominated HNM species. Bromine incorporation factors of trihalogenated HNMs were higher than those of THMs. For chlorination alone, HNM levels were about the detection limit (4 nM or 0.7 μg L(-1)) at pH 6 and 8, and in the presence of bromide or nitrite. Amino acids and amino sugars tested, except glycine and lysine, showed relatively low levels of THM (~15 μg L(-1)) formation.


Environmental Science & Technology | 2011

I-THM Formation and Speciation: Preformed Monochloramine versus Prechlorination Followed by Ammonia Addition

Darryl B. Jones; Aysenur Saglam; Aurelien Triger; Hocheol Song; Tanju Karanfil

An increasing number of utilities in the United States have been switching from chlorination to chloramination practices to comply with the more stringent trihalomethane (THM) and haloacetic acid (HAA) regulations. This has important implications for disinfection byproduct (DBP) formation because the reactions of chlorine and monochloramine (NH(2)Cl) with natural organic matter (NOM) are not the same. In this study, iodinated trihalomethane (I-THM) formation from preformed NH(2)Cl and prechlorination (at two chlorine doses and contact times) followed by ammonia addition was compared. A representative bromide/iodide ratio of 10:1 was selected and four bromide/iodide levels (ambient, 50/5 or 100/10, 200/20, and 800/80 [μg/L/μg/L]) were evaluated. The results showed that I-THM formation was generally lower for prechlorination as compared to preformed NH(2)Cl due to the oxidation of iodide to iodate by chlorine. However, while prechlorination minimized iodoform (CHI(3)) formation, prechlorination sometimes formed more I-THMs as compared to preformed NH(2)Cl due to a large increase in the formation of brominated I-THM species, which were formed at much smaller amounts from preformed NH(2)Cl. I-THM concentrations and speciation for the two chloramination scenarios (i.e., preformed NH(2)Cl vs prechlorination followed by ammonia) depended on chlorine dose, contact time, bromide/iodide concentration, and NOM characteristics of the source water (SUVA(254)).


Nature Communications | 2014

Photoautotrophic hydrogen production by eukaryotic microalgae under aerobic conditions

Jae Hoon Hwang; Hyun-Chul Kim; Jeong A. Choi; Reda A.I. Abou-Shanab; Brian A. Dempsey; John M. Regan; Jung Rae Kim; Hocheol Song; In Hyun Nam; Su Nam Kim; Woojung Lee; Donghee Park; Yongje Kim; Jaeyoung Choi; Min Kyu Ji; Woosik Jung; Byong-Hun Jeon

Eukaryotic algae and cyanobacteria produce hydrogen under anaerobic and limited aerobic conditions. Here we show that novel microalgal strains (Chlorella vulgaris YSL01 and YSL16) upregulate the expression of the hydrogenase gene (HYDA) and simultaneously produce hydrogen through photosynthesis, using CO2 as the sole source of carbon under aerobic conditions with continuous illumination. We employ dissolved oxygen regimes that represent natural aquatic conditions for microalgae. The experimental expression of HYDA and the specific activity of hydrogenase demonstrate that C. vulgaris YSL01 and YSL16 enzymatically produce hydrogen, even under atmospheric conditions, which was previously considered infeasible. Photoautotrophic H2 production has important implications for assessing ecological and algae-based photolysis.


Bioresource Technology | 2015

Carbon dioxide assisted sustainability enhancement of pyrolysis of waste biomass: A case study with spent coffee ground.

Dong-Wan Cho; Seong-Heon Cho; Hocheol Song; Eilhann E. Kwon

This work mainly presents the influence of CO2 as a reaction medium in the thermo-chemical process (pyrolysis) of waste biomass. Our experimental work mechanistically validated two key roles of CO2 in pyrolysis of biomass. For example, CO2 expedited the thermal cracking of volatile organic compounds (VOCs) evolved from the thermal degradation of spent coffee ground (SCG) and reacted with VOCs. This enhanced thermal cracking behavior and reaction triggered by CO2 directly led to the enhanced generation of CO (∼ 3000%) in the presence of CO2. As a result, this identified influence of CO2 also directly led to the substantial decrease (∼ 40-60%) of the condensable hydrocarbons (tar). Finally, the morphologic change of biochar was distinctive in the presence of CO2. Therefore, a series of the adsorption experiments with dye were conducted to preliminary explore the physico-chemical properties of biochar induced by CO2.


Chemosphere | 2010

Halonitromethanes formation in wastewater treatment plant effluents.

Hocheol Song; Jesse W. Addison; Jia Hu; Tanju Karanfil

Halonitromethanes (HNMs) constitute one class of emerging disinfection by-products with high potential health risks. This study investigated the formation and occurrence of HNMs under different disinfection scenarios and the presence of their precursors in municipal wastewater treatment plant (WWTPs) effluents. Formation potential tests performed on WWTP effluents revealed that HNM formation occurred in the order of ozonation-chlorination >> ozonation-chloramination > chlorination > chloramination. Ozonation alone did not produce any HNM. Municipal WWTP effluents contained some reactive HNM precursors, possibly the by-products of biological treatment processes and/or some moiety of industry or household origin. No effects of nitrate on the formation of HNMs were observed in this study, and nitrification in WWTPs appears to remove appreciable portion of HNM precursors, especially those reactive to chlorine. UV disinfection using low pressure lamps in municipal WWTPs had negligible impact on HNM formation potential. HNM concentrations in the effluents of selected WWTPs were either non-detectable or less than minimum reporting level, except for one WWTP that gave trichloronitromethane concentrations in the range of 0.9-1.5 microg L(-1). No HNMs were observed in the effluents disinfected with UV radiation. Therefore, it appears the typical wastewater disinfection processes involving chlorination or UV treatment in WWTPs do not produce significant amounts of HNMs.


Separation Science and Technology | 2009

Removal of Anionic Dyes from Water using Citrus limonum (Lemon) Peel: Equilibrium Studies and Kinetic Modeling

Amit Bhatnagar; Eva Kumar; A.K. Minocha; Byong-Hun Jeon; Hocheol Song; Yong-Chan Seo

Abstract The present study was undertaken to evaluate the adsorption potential of Citrus limonum (lemon) peel as an adsorbent for the removal of two anionic dyes, Methyl orange (MO) and Congo red (CR) from aqueous solutions. The adsorption was studied as a function of contact time, initial concentration, and temperature by batch method. The adsorption capacities of lemon peel adsorbent for dyes were found 50.3 and 34.5 mg/g for MO and CR, respectively. The equilibrium adsorption data was well described by the Langmuir model. Three simplified kinetic models viz. pseudo-first-order, pseudo-second-order, and Weber and Morris intraparticle diffusion model were tested to describe the adsorption process. Kinetic parameters, rate constants, equilibrium sorption capacities, and related correlation coefficients for each kinetic model were determined. It was found that the present system of dyes adsorption on lemon peel adsorbent could be described more favorably by the pseudo-first-order kinetic model. The results of the present study reveal that lemon peel adsorbent can be fruitfully utilized as an inexpensive adsorbent for dyes removal from effluents.

Collaboration


Dive into the Hocheol Song's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel C.W. Tsang

Hong Kong Polytechnic University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gil-Jae Yim

Kangwon National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge