Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gilles Berruyer is active.

Publication


Featured researches published by Gilles Berruyer.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 1999

Instrumentation of the ESRF medical imaging facility

Hélène Elleaume; A. M. Charvet; P. Berkvens; Gilles Berruyer; Thierry Brochard; Y. Dabin; M.C. Dominguez; A. Draperi; Stefan Fiedler; G. Goujon; G. Le Duc; M. Mattenet; Christian Nemoz; M. Perez; M. Renier; C. Schulze; P. Spanne; P. Suortti; W. Thomlinson; F. Estève; Bernard Bertrand; J.F. Le Bas

Abstract At the European Synchrotron Radiation Facility (ESRF) a beamport has been instrumented for medical research programs. Two facilities have been constructed for alternative operation. The first one is devoted to medical imaging and is focused on intravenous coronary angiography and computed tomography (CT). The second facility is dedicated to pre-clinical microbeam radiotherapy (MRT). This paper describes the instrumentation for the imaging facility. Two monochromators have been designed, both are based on bent silicon crystals in the Laue geometry. A versatile scanning device has been built for pre-alignment and scanning of the patient through the X-ray beam in radiography or CT modes. An intrinsic germanium detector is used together with large dynamic range electronics (16 bits) to acquire the data. The beamline is now at the end of its commissioning phase; intravenous coronary angiography is intended to start in 1999 with patients and the CT pre-clinical program is underway on small animals. The first in vivo images obtained on animals in angiography and CT modes are presented to illustrate the performances of these devices.


Physics in Medicine and Biology | 2001

Quantitative functional lung imaging with synchrotron radiation using inhaled xenon as contrast agent

S Bayat; G. Le Duc; Liisa Porra; Gilles Berruyer; Christian Nemoz; S. Monfraix; Stefan Fiedler; W Thomlinson; Pekka Suortti; C G Standertskjöld-Nordenstam; Anssi Sovijärvi

Small airways play a key role in the distribution of ventilation and in the matching of ventilation to perfusion. The purpose of this study was to introduce an imaging method that allows measurement of regional lung ventilation and evaluation of the function of airways with a small diameter. The experiments were performed at the Medical Beamline of the European Synchrotron Radiation Facility. Monochromatic synchrotron radiation beams were used to obtain quantitative respiration-gated images of lungs and airways in two anaesthetized and mechanically ventilated rabbits using inhaled stable xenon (Xe) gas as a contrast agent. Two simultaneous images were acquired at two different energies, above and below the K-edge of Xe. Logarithmic subtraction of the two images yields absolute Xe concentrations. This technique is known as K-edge subtraction (KES) radiography. Two-dimensional planar and CT images were obtained showing spatial distribution of Xe concentrations within the airspaces, as well as the dynamics of filling with Xe. Bronchi down to 1 mm in diameter were visible both in the subtraction radiographs and in tomographic images. Absolute concentrations of Xe gas were calculated within the tube carrying the inhaled gas mixture, small and large bronchi, and lung tissue. Local time constants of ventilation with Xe were obtained by following the evolution of gas concentration in sequential computed tomography images. The results of this first animal study indicate that KES imaging of lungs with Xe gas as a contrast agent has great potential in studies of the distribution of ventilation within the lungs and of airway function, including airways with a small diameter.


Physics in Medicine and Biology | 2005

Quantitative measurement of regional lung gas volume by synchrotron radiation computed tomography

S. Monfraix; S Bayat; Liisa Porra; Gilles Berruyer; Christian Nemoz; William Thomlinson; Pekka Suortti; Anssi Sovijärvi

The aim of this study was to assess the feasibility of a novel respiration-gated spiral synchrotron radiation computed tomography (SRCT) technique for direct quantification of absolute regional lung volumes, using stable xenon (Xe) gas as an inhaled indicator. Spiral SRCT with K-edge subtraction using two monochromatic x-ray beams was used to visualize and directly quantify inhaled Xe concentrations and airspace volumes in three-dimensional (3D) reconstructed lung images. Volume measurements were validated using a hollow Xe-filled phantom. Spiral images spanning 49 mm in lung height were acquired following 60 breaths of an 80% Xe-20% O2 gas mixture, in two anaesthetized and mechanically ventilated rabbits at baseline and after histamine aerosol inhalation. Volumetric images of 20 mm lung sections were obtained at functional residual capacity (FRC) and at end-inspiration. 3D images showed large patchy filling defects in peripheral airways and alveoli following histamine provocation. Local specific lung compliance was calculated based on FRC/end-inspiration images in normal lung. This study demonstrates spiral SRCT as a new technique for direct determination of regional lung volume, offering possibilities for non-invasive investigation of regional lung function and mechanics, with a uniquely high spatial resolution. An example of non-uniform volume distribution in rabbit lung following histamine inhalation is presented.


Physics in Medicine and Biology | 2000

First human transvenous coronary angiography at the European Synchrotron Radiation Facility

Hélène Elleaume; Stefan Fiedler; F. Estève; Bernard Bertrand; A. M. Charvet; P. Berkvens; Gilles Berruyer; Thierry Brochard; G. Le Duc; Christian Nemoz; M. Renier; P. Suortti; W Thomlinson; J.F. Le Bas

The first operation of the European Synchrotron Radiation Facility (ESRF) medical beamline is reported in this paper. The goal of the angiography project is to develop a reduced risk imaging technique, which can be used to follow up patients after coronary intervention. After the intravenous injection of a contrast agent (iodine) two images are produced with monochromatic beams, bracketing the iodine K-edge. The logarithmic subtraction of the two measurements results in an iodine enhanced image, which can be precisely quantified. A research protocol has been designed to evaluate the performances of this method in comparison with the conventional technique. Patients included in the protocol have previously undergone angioplasty. If a re-stenosis is suspected, the patient is imaged both at the ESRF and at the hospital with the conventional technique, within the next few days. This paper reports the results obtained with the first patients. To date, eight patients have been imaged and excellent image quality was obtained.


PLOS ONE | 2010

High-Precision Radiosurgical Dose Delivery by Interlaced Microbeam Arrays of High-Flux Low-Energy Synchrotron X-Rays

Raphaël Serduc; Elke Bräuer-Krisch; Erik Albert Siegbahn; Audrey Bouchet; Benoit Pouyatos; Romain Carron; Nicolas Pannetier; Luc Renaud; Gilles Berruyer; Christian Nemoz; Thierry Brochard; Chantal Rémy; Emmanuel L. Barbier; Alberto Bravin; Géraldine Le Duc; Antoine Depaulis; François Estève; Jean A. Laissue

Microbeam Radiation Therapy (MRT) is a preclinical form of radiosurgery dedicated to brain tumor treatment. It uses micrometer-wide synchrotron-generated X-ray beams on the basis of spatial beam fractionation. Due to the radioresistance of normal brain vasculature to MRT, a continuous blood supply can be maintained which would in part explain the surprising tolerance of normal tissues to very high radiation doses (hundreds of Gy). Based on this well described normal tissue sparing effect of microplanar beams, we developed a new irradiation geometry which allows the delivery of a high uniform dose deposition at a given brain target whereas surrounding normal tissues are irradiated by well tolerated parallel microbeams only. Normal rat brains were exposed to 4 focally interlaced arrays of 10 microplanar beams (52 µm wide, spaced 200 µm on-center, 50 to 350 keV in energy range), targeted from 4 different ports, with a peak entrance dose of 200Gy each, to deliver an homogenous dose to a target volume of 7 mm3 in the caudate nucleus. Magnetic resonance imaging follow-up of rats showed a highly localized increase in blood vessel permeability, starting 1 week after irradiation. Contrast agent diffusion was confined to the target volume and was still observed 1 month after irradiation, along with histopathological changes, including damaged blood vessels. No changes in vessel permeability were detected in the normal brain tissue surrounding the target. The interlacing radiation-induced reduction of spontaneous seizures of epileptic rats illustrated the potential pre-clinical applications of this new irradiation geometry. Finally, Monte Carlo simulations performed on a human-sized head phantom suggested that synchrotron photons can be used for human radiosurgical applications. Our data show that interlaced microbeam irradiation allows a high homogeneous dose deposition in a brain target and leads to a confined tissue necrosis while sparing surrounding tissues. The use of synchrotron-generated X-rays enables delivery of high doses for destruction of small focal regions in human brains, with sharper dose fall-offs than those described in any other conventional radiation therapy.


Review of Scientific Instruments | 2009

New technology enables high precision multislit collimators for microbeam radiation therapy

Elke Bräuer-Krisch; Herwig Requardt; Thierry Brochard; Gilles Berruyer; M. Renier; Jean A. Laissue; Alberto Bravin

During the past decade microbeam radiation therapy has evolved from preclinical studies to a stage in which clinical trials can be planned, using spatially fractionated, highly collimated and high intensity beams like those generated at the x-ray ID17 beamline of the European Synchrotron Radiation Facility. The production of such microbeams typically between 25 and 100 microm full width at half maximum (FWHM) values and 100-400 microm center-to-center (c-t-c) spacings requires a multislit collimator either with fixed or adjustable microbeam width. The mechanical regularity of such devices is the most important property required to produce an array of identical microbeams. That ensures treatment reproducibility and reliable use of Monte Carlo-based treatment planning systems. New high precision wire cutting techniques allow the fabrication of these collimators made of tungsten carbide. We present a variable slit width collimator as well as a single slit device with a fixed setting of 50 microm FWHM and 400 microm c-t-c, both able to cover irradiation fields of 50 mm width, deemed to meet clinical requirements. Important improvements have reduced the standard deviation of 5.5 microm to less than 1 microm for a nominal FWHM value of 25 microm. The specifications of both devices, the methods used to measure these characteristics, and the results are presented.


Journal of Synchrotron Radiation | 2016

The Time-resolved and Extreme-conditions XAS (TEXAS) facility at the European Synchrotron Radiation Facility: the energy-dispersive X-ray absorption spectroscopy beamline ID24

S. Pascarelli; Olivier Mathon; Trevor Mairs; I. Kantor; Giovanni Agostini; C. Strohm; Sebastien Pasternak; Florian Perrin; Gilles Berruyer; P. Chappelet; C. Clavel; M.C. Dominguez

The new energy-dispersive XAS beamline at the European Synchrotron Radiation Facility is presented. A technical description of the beamline (optical scheme, detection, sample environments) is provided and its performance is illustrated with a few recent examples of experiments by different user groups.


Journal of Cerebral Blood Flow and Metabolism | 2005

High-Resolution Blood–Brain Barrier Permeability and Blood Volume Imaging Using Quantitative Synchrotron Radiation Computed Tomography: Study on an F98 Rat Brain Glioma

Jean-François Adam; Christian Nemoz; Alberto Bravin; Stefan Fiedler; S Bayat; S. Monfraix; Gilles Berruyer; Anne Marie Charvet; Jean-François Le Bas; Hélène Elleaume; François Estève

The authors previously provided evidence of synchrotron radiation computed tomography (SRCT) efficacy for quantitative in vivo brain perfusion measurements using monochromatic X-ray beams. However, this technique was limited for small-animal studies by partial volume effects. In this paper, high-resolution absolute cerebral blood volume and blood–brain barrier permeability coefficient measurements were obtained on a rat glioma model using SRCT and a CCD camera (47 × 47 μm2 pixel size). This is the first report of in vivo high-resolution brain vasculature parameter assessment. The work gives interesting perspectives to quantify brain hemodynamic changes accurately in healthy and pathological small animals.


Journal of Synchrotron Radiation | 2010

In vivo pink-beam imaging and fast alignment procedure for rat brain lesion microbeam radiation therapy

Raphaël Serduc; Gilles Berruyer; Thierry Brochard; M. Renier; Christian Nemoz

A fast 50 µm-accuracy alignment procedure has been developed for the radiosurgery of brain lesions in rats, using microbeam radiation therapy.


Journal of Synchrotron Radiation | 2016

In vivo pink-beam imaging and fast alignment procedure for rat brain tumor radiation therapy

Christian Nemoz; Astrid Kibleur; Jean-Noël Hyacinthe; Gilles Berruyer; Thierry Brochard; Elke Bräuer-Krisch; Géraldine Le Duc; Emmanuel Brun; Hélène Elleaume; Raphaël Serduc

A fast positioning method for brain tumor microbeam irradiations for preclinical studies at third-generation X-ray sources is described. The three-dimensional alignment of the animals relative to the X-ray beam was based on the X-ray tomography multi-slices after iodine infusion. This method used pink-beam imaging produced by the ID17 wiggler. A graphical user interface has been developed in order to define the irradiation parameters: field width, height, number of angles and X-ray dose. This study is the first reporting an image guided method for soft tissue synchrotron radiotherapy. It allowed microbeam radiation therapy irradiation fields to be reduced by a factor of ∼20 compared with previous studies. It permitted more targeted, more efficient brain tumor microbeam treatments and reduces normal brain toxicity of the radiation treatment.

Collaboration


Dive into the Gilles Berruyer's collaboration.

Top Co-Authors

Avatar

Christian Nemoz

European Synchrotron Radiation Facility

View shared research outputs
Top Co-Authors

Avatar

Thierry Brochard

European Synchrotron Radiation Facility

View shared research outputs
Top Co-Authors

Avatar

M. Renier

European Synchrotron Radiation Facility

View shared research outputs
Top Co-Authors

Avatar

Alberto Bravin

European Synchrotron Radiation Facility

View shared research outputs
Top Co-Authors

Avatar

Stefan Fiedler

European Synchrotron Radiation Facility

View shared research outputs
Top Co-Authors

Avatar

P. Suortti

European Synchrotron Radiation Facility

View shared research outputs
Top Co-Authors

Avatar

W Thomlinson

European Synchrotron Radiation Facility

View shared research outputs
Top Co-Authors

Avatar

S. Monfraix

European Synchrotron Radiation Facility

View shared research outputs
Top Co-Authors

Avatar

Elke Bräuer-Krisch

European Synchrotron Radiation Facility

View shared research outputs
Top Co-Authors

Avatar

P. Berkvens

European Synchrotron Radiation Facility

View shared research outputs
Researchain Logo
Decentralizing Knowledge