Gilles Uzé
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gilles Uzé.
Nature Reviews Drug Discovery | 2007
Ernest C. Borden; Ganes C. Sen; Gilles Uzé; Robert H. Silverman; Richard M. Ransohoff; Graham R. Foster; George R. Stark
The family of interferon (IFN) proteins has now more than reached the potential envisioned by early discovering virologists: IFNs are not only antivirals with a spectrum of clinical effectiveness against both RNA and DNA viruses, but are also the prototypic biological response modifiers for oncology, and show effectiveness in suppressing manifestations of multiple sclerosis. Studies of IFNs have resulted in fundamental insights into cellular signalling mechanisms, gene transcription and innate and acquired immunity. Further elucidation of the multitude of IFN-induced genes, as well as drug development strategies targeting IFN production via the activation of the Toll-like receptors (TLRs), will almost certainly lead to newer and more efficacious therapeutics. Our goal is to offer a molecular and clinical perspective that will enable IFNs or their TLR agonist inducers to reach their full clinical potential.
Cell | 1990
Gilles Uzé; Georges Lutfalla; Ion Gresser
Abstract A cDNA coding for the human interferon a receptor has been cloned using a gene transfer approach. This consists of transferring human DNA to mouse cells and selecting for cells sensitive to human interferon α. The transfected cells expressed the human interferon α receptor, and a 5 kb human DNA was isolated from a secondary transfectant. This DNA detects an mRNA present in human cells and was used to clone a 2.7 kb cDNA from a library constructed from human Daudi cells. The sequence of this cDNA is presented. It codes for a glycoprotein of 557 amino acids with an N-terminal hydrophobic region and a single transmembrane-spanning segment. Mouse cells expressing the cDNA become sensitive to the antiviral activity of and express binding sites for human interferon a, demonstrating that the cloned cDNA encodes a functional human interferon a receptor.
European Journal of Immunology | 2004
Eliana M. Coccia; Martina Severa; Elena Giacomini; Danièle Monneron; Maria Elena Remoli; Ilkka Julkunen; Marina Cella; Roberto Lande; Gilles Uzé
In humans, the type I interferon (IFN) family consists of 13 IFN‐α subtypes, IFN‐β and IFN‐o the newly discovered IFN‐like family consists of IFN‐λ1, ‐λ2 and ‐λ3. We have investigated the expression of type I and λ IFN genes following virus infections or Toll‐like receptor (TLR) triggering in monocyte‐derived DC (MDDC) and plasmacytoid DC (pDC). We found thatall IFN‐α, ‐β, ‐o and ‐λ subtypes are expressed in influenza‐virus‐infected MDDC or pDC. Conversely, differential type I IFN gene transcription was induced in MDDC and pDC stimulated by specific TLR agonists. TLR‐9 stimulation by CpG DNA induced the expression of all IFN‐α, ‐β, ‐o and ‐λ subtypes in pDC, whereas TLR‐4 stimulation by LPS, or TLR‐3 stimulation bypoly I:C, induced only IFN‐β and IFN‐λ gene expression in MDDC. The expression pattern of IFN regulatory factor (IRF)‐5 and IRF‐7 in MDDC and pDC was also determined. IRF‐5 was constitutively expressed in the two DC subsets whereas IRF‐7 was constitutive in pDC but its expression was induced along MDDC maturation. Overall, our data indicate that the coordinated expression of IFN‐λ with IFN‐β would be of crucial importance for the maturation of DC.
Journal of Interferon and Cytokine Research | 1999
Knud Erik Mogensen; Malte Lewerenz; Jerome Reboul; Georges Lutfalla; Gilles Uzé
Recent results indicate that coherent models of how multiple interferons (IFN) are recognized and signal selectively through a common receptor are now feasible. A proposal is made that the IFN receptor, with its subunits IFNAR-1 and IFNAR-2, presents two separate ligand binding sites, and this double structure is both necessary and sufficient to ensure that the different IFN are recognized and can act selectively. The key feature is the duplication of the extracellular domain of the IFNAR-1 subunit and the configurational geometry that this imposes on the intracellular domains of the receptor subunits and their associated tyrosine kinases.
Current Topics in Microbiology and Immunology | 2007
Gilles Uzé; Gideon Schreiber; Jacob Piehler; Sandra Pellegrini
All type I IFNs act through a single cell surface receptor composed of the IFNAR1 and IFNAR2 subunits and two associated cytoplasmic tyrosine kinases of the Janus family, Tyk2 and Jak1. A central issue in type I IFN biology is to understand how a multitude of subtypes can generate similar signaling outputs but also govern specific cellular responses. This review summarizes results from the last decade that contributed to our current state of knowledge of IFN-receptor complex structure and assembly.
Arthritis Research & Therapy | 2005
Farida Djouad; Claire Bony; Thomas Häupl; Gilles Uzé; Najiba Lahlou; Pascale Louis-Plence; Florence Apparailly; François Canovas; Thierry Rème; Sany J; Christian Jorgensen; Danièle Noël
Previous studies have reported that mesenchymal stem cells (MSC) may be isolated from the synovial membrane by the same protocol as that used for synovial fibroblast cultivation, suggesting that MSC correspond to a subset of the adherent cell population, as MSC from the stromal compartment of the bone marrow (BM). The aims of the present study were, first, to better characterize the MSC derived from the synovial membrane and, second, to compare systematically, in parallel, the MSC-containing cell populations isolated from BM and those derived from the synovium, using quantitative assays. Fluorescent-activated cell sorting analysis revealed that both populations were negative for CD14, CD34 and CD45 expression and that both displayed equal levels of CD44, CD73, CD90 and CD105, a phenotype currently known to be characteristic of BM-MSC. Comparable with BM-MSC, such MSC-like cells isolated from the synovial membrane were shown for the first time to suppress the T-cell response in a mixed lymphocyte reaction, and to express the enzyme indoleamine 2,3-dioxygenase activity to the same extent as BM-MSC, which is a possible mediator of this suppressive activity. Using quantitative RT-PCR these data show that MSC-like cells from the synovium and BM may be induced to chondrogenic differentiation and, to a lesser extent, to osteogenic differentiation, but the osteogenic capacities of the synovium-derived MSC were significantly reduced based on the expression of the markers tested (collagen type II and aggrecan or alkaline phosphatase and osteocalcin, respectively). Transcription profiles, determined with the Atlas Human Cytokine/Receptor Array, revealed discrimination between the MSC-like cells from the synovial membrane and the BM-MSC by 46 of 268 genes. In particular, activin A was shown to be one major upregulated factor, highly secreted by BM-MSC. Whether this reflects a different cellular phenotype, a different amount of MSC in the synovium-derived population compared with BM-MSC adherent cell populations or the impact of a different microenvironment remains to be determined. In conclusion, although the BM-derived and synovium-derived MSC shared similar phenotypic and functional properties, both their differentiation capacities and transcriptional profiles permit one to discriminate the cell populations according to their tissue origin.
The EMBO Journal | 2003
Josiane Ragimbeau; Elisabetta Dondi; Andrés Alcover; Pierre Eid; Gilles Uzé; Sandra Pellegrini
The four mammalian Jak tyrosine kinases are non‐covalently associated with cell surface receptors binding helical bundled cytokines. In the type I interferon receptor, Tyk2 associates with the IFNAR1 receptor subunit and positively influences ligand binding to the receptor complex. Here, we report that Tyk2 is essential for stable cell surface expression of IFNAR1. In the absence of Tyk2, mature IFNAR1 is weakly expressed on the cell surface. Rather, it is localized into a perinuclear endosomal compartment which overlaps with that of recycling transferrin receptors and with early endosomal antigen‐1 (EEA1) positive vesicles. Conversely, co‐expressed Tyk2 greatly enhances surface IFNAR1 expression. Importantly, we demonstrate that Tyk2 slows down IFNAR1 degradation and that this is due, at least in part, to inhibition of IFNAR1 endocytosis. In addition, Tyk2 induces plasma membrane relocalization of the R2 subunit of the interleukin‐10 receptor. These results reveal a novel function of a Jak protein on internalization of a correctly processed cytokine receptor. This function is distinct from the previously reported effect of other Jak proteins on receptor exit from the endoplasmic reticulum.
Molecular and Cellular Biology | 2006
Diego Jaitin; Laila C. Roisman; Eva Jaks; Martynas Gavutis; Jacob Piehler; José Van der Heyden; Gilles Uzé; Gideon Schreiber
ABSTRACT Alpha and beta interferons (IFN-α and IFN-β) are multifunctional cytokines that exhibit differential activities through a common receptor composed of the subunits IFNAR1 and IFNAR2. Here we combined biophysical and functional studies to explore the mechanism that allows the alpha and beta IFNs to act differentially. For this purpose, we have engineered an IFN-α2 triple mutant termed the HEQ mutant that mimics the biological properties of IFN-β. Compared to wild-type (wt) IFN-α2, the HEQ mutant confers a 30-fold higher binding affinity towards IFNAR1, comparable to that measured for IFN-β, resulting in a much higher stability of the ternary complex as measured on model membranes. The HEQ mutant, like IFN-β, promotes a differentially higher antiproliferative effect than antiviral activity. Both bring on a down-regulation of the IFNAR2 receptor upon induction, confirming an increased ternary complex stability of the plasma membrane. Oligonucleotide microarray experiments showed similar gene transcription profiles induced by the HEQ mutant and IFN-β and higher levels of gene induction or repression than those for wt IFN-α2. Thus, we show that the differential activities of IFN-β are directly related to the binding affinity for IFNAR1. Conservation of the residues mutated in the HEQ mutant within IFN-α subtypes suggests that IFN-α has evolved to bind IFNAR1 weakly, apparently to sustain differential levels of biological activities compared to those induced by IFN-β.
Journal of Virology | 2006
Sampsa Matikainen; Jukka Sirén; Jorma Tissari; Ville Veckman; Jaana Pirhonen; Martina Severa; Qiang Sun; Rongtuan Lin; Seppo Meri; Gilles Uzé; John Hiscott; Ilkka Julkunen
ABSTRACT Epithelial cells of the lung are the primary targets for respiratory viruses. Virus-carried single-stranded RNA (ssRNA) can activate Toll-like receptors (TLRs) 7 and 8, whereas dsRNA is bound by TLR3 and a cytoplasmic RNA helicase, retinoic acid-inducible protein I (RIG-I). This recognition leads to the activation of host cell cytokine gene expression. Here we have studied the regulation of influenza A and Sendai virus-induced alpha interferon (IFN-α), IFN-β, interleukin-28 (IL-28), and IL-29 gene expression in human lung A549 epithelial cells. Sendai virus infection readily activated the expression of the IFN-α, IFN-β, IL-28, and IL-29 genes, whereas influenza A virus-induced activation of these genes was mainly dependent on pretreatment of A549 cells with IFN-α or tumor necrosis factor alpha (TNF-α). IFN-α and TNF-α induced the expression of the RIG-I, TLR3, MyD88, TRIF, and IRF7 genes, whereas no detectable TLR7 and TLR8 was seen in A549 cells. TNF-α also strongly enhanced IKKε mRNA and protein expression. Ectopic expression of a constitutively active form of RIG-I (ΔRIG-I) or IKKε, but not that of TLR3, enhanced the expression of the IFN-β, IL-28, and IL-29 genes. Furthermore, a dominant-negative form of RIG-I inhibited influenza A virus-induced IFN-β promoter activity in TNF-α-pretreated cells. In conclusion, IFN-α and TNF-α enhanced the expression of the components of TLR and RIG-I signaling pathways, but RIG-I was identified as the central regulator of influenza A virus-induced expression of antiviral cytokines in human lung epithelial cells.
Journal of Immunology | 2002
Maria Elena Remoli; Elena Giacomini; Georges Lutfalla; Elisabetta Dondi; Graziella Orefici; Angela Battistini; Gilles Uzé; Sandra Pellegrini; Eliana M. Coccia
Type I IFN regulates different aspects of the immune response, inducing a cell-mediated immunity. We have recently shown that the infection of dendritic cells (DC) with Mycobacterium tuberculosis (Mtb) induces IFN-α. In this work we have monitored a rapid induction of IFN-β followed by the delayed production of the IFN-α1 and/or -α13 subtypes. The Mtb infection rapidly activates the NF-κB complex and stimulates the phosphorylation of IFN regulatory factor (IRF)-3, events known to induce IFN-β expression in viral infection. In turn, the autocrine production of IFN-β induces the IFN-stimulated genes that contain binding sites for activated STATs in their promoters. Among the IFN-stimulated genes induced in DC through STAT activation are IRF-1 and IRF-7. The expression of IRF-1 appears to be dependent on the sequential activation of NF-κB and STAT-1. Once expressed, IRF-1 may further stimulate the transcription of IFN-β. Induction of IRF-7 is also regulated at the transcriptional level through the binding of phosphorylated STAT-1 and STAT-2, forming the IFN-stimulated gene factor-3 complex. In turn, the IRF-1 and IRF-7 expression appears to be required for the delayed induction of the IFN-α1/13 genes. Although correlative, our results strongly support the existence of a cascade of molecular events in Mtb-infected DC. Upon infection, constitutively expressed NF-κB and IRF-3 are activated and likely contribute to the rapid IFN-β expression. In turn, IFN-β-induced IRF-1 and IRF-7 may cooperate toward induction of IFN-α1/13 if infection persists and these factors are activated.