Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gillian Beamer is active.

Publication


Featured researches published by Gillian Beamer.


Journal of Immunology | 2008

Interleukin-10 Promotes Mycobacterium tuberculosis Disease Progression in CBA/J Mice

Gillian Beamer; David K. Flaherty; Barnabe D. Assogba; Paul C. Stromberg; Mercedes Gonzalez-Juarrero; Rene de Waal Malefyt; Bridget Vesosky; Joanne Turner

IL-10 is a potent immunomodulatory cytokine that affects innate and acquired immune responses. The immunological consequences of IL-10 production during pulmonary tuberculosis (TB) are currently unknown, although IL-10 has been implicated in reactivation TB in humans and with TB disease in mice. Using Mycobacterium tuberculosis-susceptible CBA/J mice, we show that blocking the action of IL-10 in vivo during chronic infection stabilized the pulmonary bacterial load and improved survival. Furthermore, this beneficial outcome was highly associated with the recruitment of T cells to the lungs and enhanced T cell IFN-γ production. Our results indicate that IL-10 promotes TB disease progression. These findings have important diagnostic and/or therapeutic implications for the prevention of reactivation TB in humans.


Journal of Leukocyte Biology | 2010

CCL5 participates in early protection against Mycobacterium tuberculosis

Bridget Vesosky; Erin K. Rottinghaus; Paul C. Stromberg; Joanne Turner; Gillian Beamer

Control of M.tb, the causative agent of TB, requires immune cell recruitment to form lung granulomas. The chemokines and chemokine receptors that promote cell migration for granuloma formation, however, are not defined completely. As immunity to M.tb manifests slowly in the lungs, a better understanding of specific roles for chemokines, in particular those that promote M.tb‐protective TH1 responses, may identify targets that could accelerate granuloma formation. The chemokine CCL5 has been detected in patients with TB and implicated in control of M.tb infection. To define a role for CCL5 in vivo during M.tb infection, CCL5 KO mice were infected with a low dose of aerosolized M.tb. During early M.tb infection, CCL5 KO mice localized fewer APCs and chemokine receptor‐positive T cells to the lungs and had microscopic evidence of altered cell trafficking to M.tb granulomas. Early acquired immunity and granuloma function were transiently impaired when CCL5 was absent, evident by delayed IFN‐γ responses and poor control of M.tb growth. Lung cells from M.tb‐infected CCL5 KO mice eventually reached or exceeded the levels of WT mice, likely as a result of partial compensation by the CCL5‐related ligand, CCL4, and not because of CCL3. Finally, our results suggest that most T cells use CCR5 but not CCR1 to interact with these ligands. Overall, these results contribute to a model of M.tb granuloma formation dependent on temporal regulation of chemokines rather than on redundant or promiscuous interactions.


Journal of Immunology | 2013

IL-10 Inhibits Mature Fibrotic Granuloma Formation during Mycobacterium tuberculosis Infection

Joshua Cyktor; Bridget Carruthers; Rachel Kominsky; Gillian Beamer; Paul C. Stromberg; Joanne Turner

Protective immunity and latent Mycobacterium tuberculosis infection in humans are associated with the formation of mature protective granulomas within the lung. Unfortunately, understanding the importance of such structures has been hindered by the lack of small-animal models that can develop mature granulomas. In this article, we describe for the first time, to our knowledge, the formation of mature, fibrotic M. tuberculosis–containing pulmonary granulomas in a mouse model of IL-10 deficiency (CBA/J IL-10−/−). Long-term control of M. tuberculosis infection in the absence of IL-10 was also associated with an early and enhanced capacity for Ag presentation and a significant increase in the generation of multifunctional T cells. Although IL-10 deficiency is known to enhance Th1 immune responses in general, we demonstrate in this study using transient anti–IL-10R treatment that it is the presence of IL-10 in vivo during the first month of M. tuberculosis infection that plays a definitive role in the inhibition of optimum protective immunity that can establish the environment for mature granuloma formation. Although the importance of IL-10 during M. tuberculosis infection has been debated, our data demonstrate that in CBA/J mice, IL-10 plays a significant early inhibitory role in preventing the development of protective immunity associated with containment of M. tuberculosis infection.


Seminars in Immunopathology | 2016

Mouse models of human TB pathology: roles in the analysis of necrosis and the development of host-directed therapies

Igor Kramnik; Gillian Beamer

A key aspect of TB pathogenesis that maintains Mycobacterium tuberculosis in the human population is the ability to cause necrosis in pulmonary lesions. As co-evolution shaped M. tuberculosis (M.tb) and human responses, the complete TB disease profile and lesion manifestation are not fully reproduced by any animal model. However, animal models are absolutely critical to understand how infection with virulent M.tb generates outcomes necessary for the pathogen transmission and evolutionary success. In humans, a wide spectrum of TB outcomes has been recognized based on clinical and epidemiological data. In mice, there is clear genetic basis for susceptibility. Although the spectra of human and mouse TB do not completely overlap, comparison of human TB with mouse lesions across genetically diverse strains firmly establishes points of convergence. By embracing the genetic heterogeneity of the mouse population, we gain tremendous advantage in the quest for suitable in vivo models. Below, we review genetically defined mouse models that recapitulate a key element of M.tb pathogenesis—induction of necrotic TB lesions in the lungs—and discuss how these models may reflect TB stratification and pathogenesis in humans. The approach ensures that roles that mouse models play in basic and translational TB research will continue to increase allowing researchers to address fundamental questions of TB pathogenesis and bacterial physiology in vivo using this well-defined, reproducible, and cost-efficient system. Combination of the new generation mouse models with advanced imaging technologies will also allow rapid and inexpensive assessment of experimental vaccines and therapies prior to testing in larger animals and clinical trials.


Infection and Immunity | 2013

A Single VHH-Based Toxin-Neutralizing Agent and an Effector Antibody Protect Mice against Challenge with Shiga Toxins 1 and 2

Jacqueline M. Tremblay; Jean Mukherjee; Clinton E. Leysath; Michelle Debatis; Kwasi Ofori; Karen Baldwin; Courtney Boucher; Rachel Peters; Gillian Beamer; Abhineet S. Sheoran; Daniela Bedenice; Saul Tzipori; Charles B. Shoemaker

ABSTRACT Shiga toxin-producing Escherichia coli (STEC) is a major cause of severe food-borne disease worldwide, and two Shiga toxins, Stx1 and Stx2, are primarily responsible for the serious disease consequence, hemolytic-uremic syndrome (HUS). Here we report identification of a panel of heavy-chain-only antibody (Ab) VH (VHH) domains that neutralize Stx1 and/or Stx2 in cell-based assays. VHH heterodimer toxin-neutralizing agents containing two linked Stx1-neutralizing VHHs or two Stx2-neutralizing VHHs were generally much more potent at Stx neutralization than a pool of the two-component monomers tested in cell-based assays and in vivo mouse models. We recently reported that clearance of toxins can be promoted by coadministering a VHH-based toxin-neutralizing agent with an antitag monoclonal antibody (MAb), called the “effector Ab,” that indirectly decorates each toxin molecule with four Ab molecules. Decoration occurs because the Ab binds to a common epitopic tag present at two sites on each of the two VHH heterodimer molecules that bind to each toxin molecule. Here we show that coadministration of effector Ab substantially improved the efficacy of Stx toxin-neutralizing agents to prevent death or kidney damage in mice following challenge with Stx1 or Stx2. A single toxin-neutralizing agent consisting of a double-tagged VHH heterotrimer—one Stx1-specific VHH, one Stx2-specific VHH, and one Stx1/Stx2 cross-specific VHH—was effective in preventing all symptoms of intoxication from Stx1 and Stx2 when coadministered with effector Ab. Overall, the availability of simple, defined, recombinant proteins that provide cost-effective protection against HUS opens up new therapeutic approaches to managing disease.


Mbio | 2016

Tuberculosis Susceptibility and Vaccine Protection Are Independently Controlled by Host Genotype

Clare M. Smith; Megan K. Proulx; Andrew J. Olive; Dominick Laddy; Bibhuti B. Mishra; Caitlin Moss; Nuria Martinez Gutierrez; Michelle M. Bellerose; Palmira Barreira-Silva; Jia Yao Phuah; Richard E. Baker; Samuel M. Behar; Hardy Kornfeld; Thomas G. Evans; Gillian Beamer; Christopher M. Sassetti

ABSTRACT The outcome of Mycobacterium tuberculosis infection and the immunological response to the bacillus Calmette-Guerin (BCG) vaccine are highly variable in humans. Deciphering the relative importance of host genetics, environment, and vaccine preparation for the efficacy of BCG has proven difficult in natural populations. We developed a model system that captures the breadth of immunological responses observed in outbred individual mice, which can be used to understand the contribution of host genetics to vaccine efficacy. This system employs a panel of highly diverse inbred mouse strains, consisting of the founders and recombinant progeny of the “Collaborative Cross” project. Unlike natural populations, the structure of this panel allows the serial evaluation of genetically identical individuals and the quantification of genotype-specific effects of interventions such as vaccination. When analyzed in the aggregate, our panel resembled natural populations in several important respects: the animals displayed a broad range of susceptibility to M. tuberculosis, differed in their immunological responses to infection, and were not durably protected by BCG vaccination. However, when analyzed at the genotype level, we found that these phenotypic differences were heritable. M. tuberculosis susceptibility varied between lines, from extreme sensitivity to progressive M. tuberculosis clearance. Similarly, only a minority of the genotypes was protected by vaccination. The efficacy of BCG was genetically separable from susceptibility to M. tuberculosis, and the lack of efficacy in the aggregate analysis was driven by nonresponsive lines that mounted a qualitatively distinct response to infection. These observations support an important role for host genetic diversity in determining BCG efficacy and provide a new resource to rationally develop more broadly efficacious vaccines. IMPORTANCE Tuberculosis (TB) remains an urgent global health crisis, and the efficacy of the currently used TB vaccine, M. bovis BCG, is highly variable. The design of more broadly efficacious vaccines depends on understanding the factors that limit the protection imparted by BCG. While these complex factors are difficult to disentangle in natural populations, we used a model population of mice to understand the role of host genetic composition in BCG efficacy. We found that the ability of BCG to protect mice with different genotypes was remarkably variable. The efficacy of BCG did not depend on the intrinsic susceptibility of the animal but, instead, correlated with qualitative differences in the immune responses to the pathogen. These studies suggest that host genetic polymorphism is a critical determinant of vaccine efficacy and provide a model system to develop interventions that will be useful in genetically diverse populations. Tuberculosis (TB) remains an urgent global health crisis, and the efficacy of the currently used TB vaccine, M. bovis BCG, is highly variable. The design of more broadly efficacious vaccines depends on understanding the factors that limit the protection imparted by BCG. While these complex factors are difficult to disentangle in natural populations, we used a model population of mice to understand the role of host genetic composition in BCG efficacy. We found that the ability of BCG to protect mice with different genotypes was remarkably variable. The efficacy of BCG did not depend on the intrinsic susceptibility of the animal but, instead, correlated with qualitative differences in the immune responses to the pathogen. These studies suggest that host genetic polymorphism is a critical determinant of vaccine efficacy and provide a model system to develop interventions that will be useful in genetically diverse populations.


Journal of Leukocyte Biology | 2006

Exposure to Mycobacterium avium can modulate established immunity against Mycobacterium tuberculosis infection generated by Mycobacterium bovis BCG vaccination

David K. Flaherty; Bridget Vesosky; Gillian Beamer; Paul C. Stromberg; Joanne Turner

Mycobacterium bovis bacille Calmette Guerin (BCG), the current vaccine against infection with Mycobacterium tuberculosis, offers a variable, protective efficacy in man. It has been suggested that exposure to environmental mycobacteria can interfere with the generation of BCG‐specific immunity. We hypothesized that exposure to environmental mycobacteria following BCG vaccination would interfere with established BCG immunity and reduce protective efficacy, thus modeling the guidelines for BCG vaccination within the first year of life. Mice were vaccinated with BCG and subsequently given repeated oral doses of live Mycobacterium avium to model exposure to environmental mycobacteria. The protective efficacy of BCG with and without subsequent exposure to M. avium was determined following an aerogenic challenge with M. tuberculosis. Exposure of BCG‐vaccinated mice to M. avium led to a persistent increase in the number of activated T cells within the brachial lymph nodes but similar T cell activation profiles in the lungs following infection with M. tuberculosis. The capacity of BCG‐vaccinated mice to reduce the bacterial load following infection with M. tuberculosis was impaired in mice that had been exposed to M. avium. Our data suggest that exposure to environmental mycobacteria can negatively impact the protection afforded by BCG. These findings are relevant for the development of a vaccine administered in regions with elevated levels of environmental mycobacteria.


Clinical and Vaccine Immunology | 2008

Peripheral blood gamma interferon release assays predict lung responses and Mycobacterium tuberculosis disease outcome in mice.

Gillian Beamer; David K. Flaherty; Bridget Vesosky; Joanne Turner

ABSTRACT Current diagnostic tests for tuberculosis (TB) are not able to distinguish active disease from latent Mycobacterium tuberculosis infection, nor are they able to quantify the risk of a latently infected person progressing to active TB. There is interest, however, in adapting antigen-specific gamma interferon (IFN-γ) release assays (IGRAs) to predict disease outcome. In this study, we used the differential susceptibilities of inbred mouse strains to M. tuberculosis infection to evaluate the prognostic capabilities of IGRAs. Using lung and blood cultures, we determined that CBA/J, DBA/2, and C3H/HeJ mice (models of heightened risk of progression to active TB) produced less antigen-specific IFN-γ in response to M. tuberculosis culture filtrate proteins and early secreted antigenic target-6 than the relatively resistant C57BL/6 mouse strain. Additionally, reduced IFN-γ secretion in supernatants reflected a reduced frequency of IFN-γ-responding cells in the lung and blood and not a specific defect in IFN-γ secretion at the single-cell level. Importantly, detection of antigen-specific IFN-γ from blood cultures accurately reflected lung responses, indicating that blood can be an appropriate test tissue in humans. Furthermore, reduced antigen-specific IFN-γ production and low frequencies of IFN-γ-responding cells from peripheral blood predicted increased risk of TB disease progression across genetically diverse TB disease-susceptible mouse strains, suggesting that similar results may occur in humans. The development of efficacious predictive diagnostic tests for humans would lead to targeted therapy prior to progression to active TB, reducing transmission, incidence, and prevalence rates while maximizing the use of public health resources.


PLOS ONE | 2013

Clonal Expansions of CD8+ T Cells with IL-10 Secreting Capacity Occur during Chronic Mycobacterium tuberculosis Infection

Joshua Cyktor; Bridget Carruthers; Gillian Beamer; Joanne Turner

The exact role of CD8+ T cells during Mycobacterium tuberculosis (Mtb) infection has been heavily debated, yet it is generally accepted that CD8+ T cells contribute to protection against Mtb. In this study, however, we show that the Mtb-susceptible CBA/J mouse strain accumulates large numbers of CD8+ T cells in the lung as infection progresses, and that these cells display a dysfunctional and immunosuppressive phenotype (PD-1+, Tim-3+, CD122+). CD8+ T cell expansions from the lungs of Mtb-infected CBA/J mice were also capable of secreting the immunosuppressive cytokine interleukin-10 (IL-10), although in vivo CD8+ T cell depletion did not significantly alter Mtb burden. Further analysis revealed that pulmonary CD8+ T cells from Mtb-infected CBA/J mice were clonally expanded, preferentially expressing T cell receptor (TcR) Vβ chain 8 (8.2, 8.3) or Vβ 14. Although Vβ8+ CD8+ T cells were responsible for the majority of IL-10 production, in vivo depletion of Vβ8+ did not significantly change the outcome of Mtb infection, which we hypothesize was a consequence of their dual IL-10/IFN-γ secreting profiles. Our data demonstrate that IL-10-secreting CD8+ T cells can arise during chronic Mtb infection, although the significance of this T cell population in tuberculosis pathogenesis remains unclear.


PLOS ONE | 2014

Prolonged Prophylactic Protection from Botulism with a Single Adenovirus Treatment Promoting Serum Expression of a VHH-Based Antitoxin Protein

Jean Mukherjee; Igor Dmitriev; Michelle Debatis; Jacqueline M. Tremblay; Gillian Beamer; Elena A. Kashentseva; David T. Curiel; Charles B. Shoemaker

Current therapies for most acute toxin exposures are limited to administration of polyclonal antitoxin serum. We have shown that VHH-based neutralizing agents (VNAs) consisting of two or more linked, toxin-neutralizing heavy-chain-only VH domains (VHHs), each binding distinct epitopes, can potently protect animals from lethality in several intoxication models including Botulinum neurotoxin serotype A1 (BoNT/A1). Appending a 14 amino acid albumin binding peptide (ABP) to an anti-BoNT/A1 heterodimeric VNA (H7/B5) substantially improved serum stability and resulted in an effective VNA serum half-life of 1 to 2 days. A recombinant, replication-incompetent, adenoviral vector (Ad/VNA-BoNTA) was engineered that induces secretion of biologically active VNA, H7/B5/ABP (VNA-BoNTA), from transduced cells. Mice administered a single dose of Ad/VNA-BoNTA, or a different Ad/VNA, via different administration routes led to a wide range of VNA serum levels measured four days later; generally intravenous > intraperitoneal > intramuscular > subcutaneous. Ad/VNA-BoNTA treated mice were 100% protected from 10 LD50 of BoNT/A1 for more than six weeks and protection positively correlated with serum levels of VNA-BoNTA exceeding about 5 ng/ml. Some mice developed antibodies that inhibited VNA binding to target but these mice displayed no evidence of kidney damage due to deposition of immune complexes. Mice were also successfully protected from 10 LD50 BoNT/A1 when Ad/VNA-BoNTA was administered up to 1.5 hours post-intoxication, demonstrating rapid appearance of the protective VNA in serum following treatment. Genetic delivery of VNAs promises to be an effective method of providing prophylactic protection and/or acute treatments for many toxin-mediated diseases.

Collaboration


Dive into the Gillian Beamer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David K. Flaherty

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge