Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jacqueline M. Tremblay is active.

Publication


Featured researches published by Jacqueline M. Tremblay.


PLOS ONE | 2012

A Novel Strategy for Development of Recombinant Antitoxin Therapeutics Tested in a Mouse Botulism Model

Jean Mukherjee; Jacqueline M. Tremblay; Clinton E. Leysath; Kwasi Ofori; Karen Baldwin; Xiaochuan Feng; Daniela Bedenice; Robert P. Webb; Patrick M. Wright; Leonard A. Smith; Saul Tzipori; Charles B. Shoemaker

Antitoxins are needed that can be produced economically with improved safety and shelf life compared to conventional antisera-based therapeutics. Here we report a practical strategy for development of simple antitoxin therapeutics with substantial advantages over currently available treatments. The therapeutic strategy employs a single recombinant ‘targeting agent’ that binds a toxin at two unique sites and a ‘clearing Ab’ that binds two epitopes present on each targeting agent. Co-administration of the targeting agent and the clearing Ab results in decoration of the toxin with up to four Abs to promote accelerated clearance. The therapeutic strategy was applied to two Botulinum neurotoxin (BoNT) serotypes and protected mice from lethality in two different intoxication models with an efficacy equivalent to conventional antitoxin serum. Targeting agents were a single recombinant protein consisting of a heterodimer of two camelid anti-BoNT heavy-chain-only Ab VH (VHH) binding domains and two E-tag epitopes. The clearing mAb was an anti-E-tag mAb. By comparing the in vivo efficacy of treatments that employed neutralizing vs. non-neutralizing agents or the presence vs. absence of clearing Ab permitted unprecedented insight into the roles of toxin neutralization and clearance in antitoxin efficacy. Surprisingly, when a post-intoxication treatment model was used, a toxin-neutralizing heterodimer agent fully protected mice from intoxication even in the absence of clearing Ab. Thus a single, easy-to-produce recombinant protein was as efficacious as polyclonal antiserum in a clinically-relevant mouse model of botulism. This strategy should have widespread application in antitoxin development and other therapies in which neutralization and/or accelerated clearance of a serum biomolecule can offer therapeutic benefit.


Toxicon | 2010

Camelid single domain antibodies (VHHs) as neuronal cell intrabody binding agents and inhibitors of Clostridium botulinum neurotoxin (BoNT) proteases.

Jacqueline M. Tremblay; Chueh-Ling Kuo; Claudia Abeijon; Jorge Sepulveda; George A. Oyler; Xuebo Hu; Moonsoo M. Jin; Charles B. Shoemaker

Botulinum neurotoxins (BoNTs) function by delivering a protease to neuronal cells that cleave SNARE proteins and inactivate neurotransmitter exocytosis. Small (14 kDa) binding domains specific for the protease of BoNT serotypes A or B were selected from libraries of heavy chain only antibody domains (VHHs or nanobodies) cloned from immunized alpacas. Several VHHs bind the BoNT proteases with high affinity (K(D) near 1 nM) and include potent inhibitors of BoNT/A protease activity (K(i) near 1 nM). The VHHs retain their binding specificity and inhibitory functions when expressed within mammalian neuronal cells as intrabodies. A VHH inhibitor of BoNT/A protease was able to protect neuronal cell SNAP25 protein from cleavage following intoxication with BoNT/A holotoxin. These results demonstrate that VHH domains have potential as components of therapeutic agents for reversal of botulism intoxication.


Journal of Biological Chemistry | 2013

Stepwise engineering of heterodimeric single domain camelid VHH antibodies that passively protect mice from ricin toxin.

David J. Vance; Jacqueline M. Tremblay; Nicholas J. Mantis; Charles B. Shoemaker

Background: We sought to engineer highly efficacious agents that neutralize ricin toxin. Results: We identified monomeric single-chain camelid VH domains (VHHs) capable of neutralizing ricin in vitro and engineered heterodimeric VHHs that neutralized ricin in vivo. Conclusion: Stepwise engineering of VHHs resulted in highly potent ricin toxin-neutralizing antibodies. Significance: This study highlights the potential use of a VHH platform as a strategy for therapeutics against diverse biological toxins. In an effort to engineer countermeasures for the category B toxin ricin, we produced and characterized a collection of epitopic tagged, heavy chain-only antibody VH domains (VHHs) specific for the ricin enzymatic (RTA) and binding (RTB) subunits. Among the 20 unique ricin-specific VHHs we identified, six had toxin-neutralizing activity: five specific for RTA and one specific for RTB. Three neutralizing RTA-specific VHHs were each linked via a short peptide spacer to the sole neutralizing anti-RTB VHH to create VHH “heterodimers.” As compared with equimolar concentrations of their respective monovalent monomers, all three VHH heterodimers had higher affinities for ricin and, in the case of heterodimer D10/B7, a 6-fold increase in in vitro toxin-neutralizing activity. When passively administered to mice at a 4:1 heterodimer:toxin ratio, D10/B7 conferred 100% survival in response to a 10 × LD50 ricin challenge, whereas a 2:1 heterodimer:toxin ratio conferred 20% survival. However, complete survival was achievable when the low dose of D10/B7 was combined with an IgG1 anti-epitopic tag monoclonal antibody, possibly because decorating the toxin with up to four IgGs promoted serum clearance. The two additional ricin-specific heterodimers, when tested in vivo, provided equal or greater passive protection than D10/B7, thereby warranting further investigation of all three heterodimers as possible therapeutics.


Infection and Immunity | 2013

A Single VHH-Based Toxin-Neutralizing Agent and an Effector Antibody Protect Mice against Challenge with Shiga Toxins 1 and 2

Jacqueline M. Tremblay; Jean Mukherjee; Clinton E. Leysath; Michelle Debatis; Kwasi Ofori; Karen Baldwin; Courtney Boucher; Rachel Peters; Gillian Beamer; Abhineet S. Sheoran; Daniela Bedenice; Saul Tzipori; Charles B. Shoemaker

ABSTRACT Shiga toxin-producing Escherichia coli (STEC) is a major cause of severe food-borne disease worldwide, and two Shiga toxins, Stx1 and Stx2, are primarily responsible for the serious disease consequence, hemolytic-uremic syndrome (HUS). Here we report identification of a panel of heavy-chain-only antibody (Ab) VH (VHH) domains that neutralize Stx1 and/or Stx2 in cell-based assays. VHH heterodimer toxin-neutralizing agents containing two linked Stx1-neutralizing VHHs or two Stx2-neutralizing VHHs were generally much more potent at Stx neutralization than a pool of the two-component monomers tested in cell-based assays and in vivo mouse models. We recently reported that clearance of toxins can be promoted by coadministering a VHH-based toxin-neutralizing agent with an antitag monoclonal antibody (MAb), called the “effector Ab,” that indirectly decorates each toxin molecule with four Ab molecules. Decoration occurs because the Ab binds to a common epitopic tag present at two sites on each of the two VHH heterodimer molecules that bind to each toxin molecule. Here we show that coadministration of effector Ab substantially improved the efficacy of Stx toxin-neutralizing agents to prevent death or kidney damage in mice following challenge with Stx1 or Stx2. A single toxin-neutralizing agent consisting of a double-tagged VHH heterotrimer—one Stx1-specific VHH, one Stx2-specific VHH, and one Stx1/Stx2 cross-specific VHH—was effective in preventing all symptoms of intoxication from Stx1 and Stx2 when coadministered with effector Ab. Overall, the availability of simple, defined, recombinant proteins that provide cost-effective protection against HUS opens up new therapeutic approaches to managing disease.


Biochimica et Biophysica Acta | 2002

Both isoforms of mammalian phosphatidylinositol transfer protein are capable of binding and transporting sphingomyelin

Hong Li; Jacqueline M. Tremblay; Lynwood R. Yarbrough; George M. Helmkamp

The structurally related mammalian alpha and beta isoforms of phosphatidylinositol (PtdIns) transfer protein (PITP) bind reversibly a single phospholipid molecule, preferably PtdIns or phosphatidylcholine (PtdCho), and transport that lipid between membrane surfaces. PITPbeta, but not PITPalpha, is reported extensively in the scientific literature to exhibit the additional capacity to bind and transport sphingomyelin (CerPCho). We undertook a detailed investigation of the lipid binding and transfer specificity of the soluble mammalian PITP isoforms. We employed a variety of donor and acceptor membrane lipid compositions to determine the sensitivity of recombinant rat PITPalpha and PITPbeta isoforms toward PtdIns, PtdCho, CerPCho, and phosphatidate (PtdOH). Results indicated often striking differences in protein-phospholipid and protein-membrane interactions. We demonstrated unequivocally that both isoforms were capable of binding and transferring CerPCho; we confirmed that the beta isoform was the more active. The order of transfer specific activity was similar for both isoforms: PtdIns>PtdCho>CerPCho>>PtdOH. Independently, we verified the binding of CerPCho to both isoforms by showing an increase in holoprotein isoelectric point following the exchange of protein-bound phosphatidylglycerol for membrane-associated CerPCho. We conclude that PITPalpha and PITPbeta are able to bind and transport glycero- and sphingophospholipids.


Journal of Biological Chemistry | 2015

Mechanisms of Ricin Toxin Neutralization Revealed through Engineered Homodimeric and Heterodimeric Camelid Antibodies

Cristina Herrera; Jacqueline M. Tremblay; Charles B. Shoemaker; Nicholas J. Mantis

Background: Bispecific heterodimeric camelid heavy chain-only antibodies (VHHs) have been shown to neutralize ricin toxin in vivo. Results: Heterodimeric VHHs promote ricin aggregation in solution and block toxin attachment to cell surfaces. Conclusion: The bispecific nature of the heterodimeric VHHs may be important for toxin neutralization in vivo. Significance: Understanding mechanisms of toxin neutralization will lead to the development of new antitoxin agents. Novel antibody constructs consisting of two or more different camelid heavy-chain only antibodies (VHHs) joined via peptide linkers have proven to have potent toxin-neutralizing activity in vivo against Shiga, botulinum, Clostridium difficile, anthrax, and ricin toxins. However, the mechanisms by which these so-called bispecific VHH heterodimers promote toxin neutralization remain poorly understood. In the current study we produced a new collection of ricin-specific VHH heterodimers, as well as VHH homodimers, and characterized them for their ability neutralize ricin in vitro and in vivo. We demonstrate that the VHH heterodimers, but not homodimers were able to completely protect mice against ricin challenge, even though the two classes of antibodies (heterodimers and homodimers) had virtually identical affinities for ricin holotoxin and similar IC50 values in a Vero cell cytotoxicity assay. The VHH heterodimers did differ from the homodimers in their ability to promote toxin aggregation in solution, as revealed through analytical ultracentrifugation. Moreover, the VHH heterodimers that were most effective at promoting ricin aggregation in solution were also the most effective at blocking ricin attachment to cell surfaces. Collectively, these data suggest that heterodimeric VHH-based neutralizing agents may function through the formation of antibody-toxin complexes that are impaired in their ability to access host cell receptors.


PLOS ONE | 2014

Prolonged Prophylactic Protection from Botulism with a Single Adenovirus Treatment Promoting Serum Expression of a VHH-Based Antitoxin Protein

Jean Mukherjee; Igor Dmitriev; Michelle Debatis; Jacqueline M. Tremblay; Gillian Beamer; Elena A. Kashentseva; David T. Curiel; Charles B. Shoemaker

Current therapies for most acute toxin exposures are limited to administration of polyclonal antitoxin serum. We have shown that VHH-based neutralizing agents (VNAs) consisting of two or more linked, toxin-neutralizing heavy-chain-only VH domains (VHHs), each binding distinct epitopes, can potently protect animals from lethality in several intoxication models including Botulinum neurotoxin serotype A1 (BoNT/A1). Appending a 14 amino acid albumin binding peptide (ABP) to an anti-BoNT/A1 heterodimeric VNA (H7/B5) substantially improved serum stability and resulted in an effective VNA serum half-life of 1 to 2 days. A recombinant, replication-incompetent, adenoviral vector (Ad/VNA-BoNTA) was engineered that induces secretion of biologically active VNA, H7/B5/ABP (VNA-BoNTA), from transduced cells. Mice administered a single dose of Ad/VNA-BoNTA, or a different Ad/VNA, via different administration routes led to a wide range of VNA serum levels measured four days later; generally intravenous > intraperitoneal > intramuscular > subcutaneous. Ad/VNA-BoNTA treated mice were 100% protected from 10 LD50 of BoNT/A1 for more than six weeks and protection positively correlated with serum levels of VNA-BoNTA exceeding about 5 ng/ml. Some mice developed antibodies that inhibited VNA binding to target but these mice displayed no evidence of kidney damage due to deposition of immune complexes. Mice were also successfully protected from 10 LD50 BoNT/A1 when Ad/VNA-BoNTA was administered up to 1.5 hours post-intoxication, demonstrating rapid appearance of the protective VNA in serum following treatment. Genetic delivery of VNAs promises to be an effective method of providing prophylactic protection and/or acute treatments for many toxin-mediated diseases.


International Journal for Parasitology | 2010

Schistosoma mansoni host-exposed surface antigens characterized by sera and recombinant antibodies from schistosomiasis-resistant rats

Jorge Sepulveda; Jacqueline M. Tremblay; Jon P. DeGnore; Patrick J. Skelly; Charles B. Shoemaker

Antibodies from Schistosoma mansoni-infected rats, unlike mice, show a higher titer for schistosome apical tegumental antigens compared with non-apical membrane antigens. These antibodies bind to the surface of living lung-stage worms and to formaldehyde-fixed adult worms. We produced a single-chain antibody Fv domain (scFv) phage library displaying the antibody repertoire of rats highly immune to schistosome infection and we selected for scFvs that recognize the host-exposed surface of worms. Five unique rat scFvs (Teg1, Teg4, Teg5, Teg20 and Teg37) were obtained which recognize schistosome surface epitopes. Each of the scFvs recognizes the surface of living schistosomula and lung-stage schistosomules and/or the surface of formaldehyde-fixed adult worms. None of these scFvs reproducibly stained living adult worms. This suggests that a change occurs during the transition from lung schistosomules to 4-week adults such that at least some surface antigens, although remaining on the surface in living adult worms, can no longer be immunologically stained. Teg1 and Teg4 scFvs both recognize specific bands on Western blots. No bands were observed for the other three scFvs, suggesting that these scFvs may recognize non-protein or conformationally-dependent epitopes. Teg1 was unambiguously identified as recognizing the S. mansoni tetraspanin antigen, SmTSP-2, within the large extracellular domain. Teg4 recognizes a 35kDa band tentatively identified as Sm29 by proteomic analysis. These scFvs can now be used to characterize schistosome epitopes at the host-parasite interface, to target worms in vivo, and to study the mechanisms by which these worms naturally evade immune damage to the tegument within permissive hosts.


Infection and Immunity | 2015

Adenovirus Vector Expressing Stx1/Stx2-Neutralizing Agent Protects Piglets Infected with Escherichia coli O157:H7 against Fatal Systemic Intoxication

Abhineet S. Sheoran; Igor Dmitriev; Elena A. Kashentseva; Ocean Cohen; Jean Mukherjee; Michelle Debatis; Jonathan Shearer; Jacqueline M. Tremblay; Gillian Beamer; David T. Curiel; Charles B. Shoemaker; Saul Tzipori

ABSTRACT Hemolytic-uremic syndrome (HUS), caused by Shiga toxin (Stx)-producing Escherichia coli (STEC), remains untreatable. Production of human monoclonal antibodies against Stx, which are highly effective in preventing Stx sequelae in animal models, is languishing due to cost and logistics. We reported previously that the production and evaluation of a camelid heavy-chain-only VH domain (VHH)-based neutralizing agent (VNA) targeting Stx1 and Stx2 (VNA-Stx) protected mice from Stx1 and Stx2 intoxication. Here we report that a single intramuscular (i.m.) injection of a nonreplicating adenovirus (Ad) vector carrying a secretory transgene of VNA-Stx (Ad/VNA-Stx) protected mice challenged with Stx2 and protected gnotobiotic piglets infected with STEC from fatal systemic intoxication. One i.m. dose of Ad/VNA-Stx prevented fatal central nervous system (CNS) symptoms in 9 of 10 animals when it was given to piglets 24 h after bacterial challenge and in 5 of 9 animals when it was given 48 h after bacterial challenge, just prior to the onset of CNS symptoms. All 6 placebo animals died or were euthanized with severe CNS symptoms. Ad/VNA-Stx treatment had no impact on diarrhea. In conclusion, Ad/VNA-Stx treatment is effective in protecting piglets from fatal Stx2-mediated CNS complications following STEC challenge. With a low production cost and further development, this could presumably be an effective treatment for patients with HUS and/or individuals at high risk of developing HUS due to exposure to STEC.


Laboratory Investigation | 2014

Adenoviral targeting using genetically incorporated camelid single variable domains

Sergey A. Kaliberov; Lyudmila N. Kaliberova; Maurizio Buggio; Jacqueline M. Tremblay; Charles B. Shoemaker; David T. Curiel

The unique ability of human adenovirus serotype 5 (Ad5) to accomplish efficient transduction has allowed the use of Ad5-based vectors for a range of gene therapy applications. Several strategies have been developed to alter tropism of Ad vectors to achieve a cell-specific gene delivery by using fiber modifications via genetic incorporation of targeting motifs. In this study, we have explored the utility of novel anti-human carcinoembryonic antigen (hCEA) single variable domains derived from heavy chain (VHH) camelid family of antibodies to achieve targeted gene transfer. To obtain anti-CEA VHHs, we produced a VHH-display library from peripheral blood lymphocytes RNA of alpacas at the peak of immune response to the hCEA antigen (Ag). We genetically incorporated an anti-hCEA VHH into a de-knobbed Ad5 fiber-fibritin chimera and demonstrated selective targeting to the cognate epitope expressed on the membrane surface of target cells. We report that the anti-hCEA VHH used in this study retains Ag recognition functionality and provides specificity for gene transfer of capsid-modified Ad5 vectors. These studies clearly demonstrated the feasibility of retargeting of Ad5-based gene transfer using VHHs.

Collaboration


Dive into the Jacqueline M. Tremblay's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David T. Curiel

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge