Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gillian Stewart is active.

Publication


Featured researches published by Gillian Stewart.


Estuaries and Coasts | 2015

Impact of Climate Change on Estuarine Zooplankton: Surface Water Warming in Long Island Sound Is Associated with Changes in Copepod Size and Community Structure

Edward Rice; Hans G. Dam; Gillian Stewart

In coastal ecosystems with decades of eutrophication and other anthropogenic stressors, the impact of climate change on planktonic communities can be difficult to detect. A time series of monthly water temperatures in the Central Basin of Long Island Sound (LIS) from the late 1940s until 2012 indicates a warming rate of 0.03xa0°Cxa0year−1. Relative to the early 1950s, there has been a concurrent decrease in the mean size of the dominant copepod species Acartia tonsa and Acartia hudsonica, an increase in the proportion of the small copepod Oithona sp., and the disappearance of the two largest-sized copepod genera from the 1950s. These changes are consistent with predictions of the impact of climate change on aquatic ectotherms. This suggests that even in eutrophic systems where food is not limiting, a continued increase in temperature could result in a smaller-sized copepod community. Since copepods dominate the zooplankton, which in turn link primary producers and upper trophic levels, a reduction in mean size could alter food web connectivity, decreasing the efficiency of trophic transfer between phytoplankton and endemic larval fish.


Bulletin of Environmental Contamination and Toxicology | 2012

Carbon assimilation and digestive toxicity in naïve grass shrimp (Palaemonetes pugio) exposed to dietary cadmium.

David R. Seebaugh; William G. Wallace; William J. L’Amoreaux; Gillian Stewart

Naïve grass shrimp Palaemonetes pugio were pulse-fed cadmium-contaminated meals containing carbon-14, fluorescent or near-infrared markers and analyzed for carbon assimilation efficiency, gut residence time, feces elimination rate, extracellular digestive protease activity or gut pH. Carbon assimilation efficiency (~83%), minimum gut residence time (~435xa0min) and proventriculus pH (~5.29 to ~6.01) were not impacted significantly by cadmium ingestion. A dose-dependent decrease in feces elimination rate (from ~14.4 to ~6.4xa0mm h−1) was observed for shrimp for 2xa0h following minimum gut residence time. Protease activities increased ~2.4-fold over the range of dietary cadmium exposures, however, this variation was not dose-dependent. Differential impacts of cadmium exposure on carbon and cadmium assimilation reported previously are consistent with work involving shrimp subjected to chronic field exposure. The influence of ingested cadmium on feces elimination rate may be related to pre-assimilatory impacts on packaging, intestinal transport or release of feces. Protease activities may have been influenced by pre-assimilatory interactions between available cadmium ions in gut fluid and enzyme-secreting cells of the hepatopancreatic epithelium or direct impacts on active enzymes.


Biogeosciences Discussions | 2018

Introduction to the French GEOTRACES North Atlantic Transect (GA01): GEOVIDE cruise

Géraldine Sarthou; Pascale Lherminier; Eric P. Achterberg; Fernando Alonso-Pérez; Eva Bucciarelli; Julia Boutorh; Vincent Bouvier; Edward A. Boyle; Pierre Branellec; Lidia I. Carracedo; Núria Casacuberta; Maxi Castrillejo; Marie Cheize; Leonardo Contreira Pereira; Daniel Cossa; Nathalie Daniault; Emmanuel De Saint-Léger; Frank Dehairs; Feifei Deng; Floriane Desprez de Gésincourt; Jérémy Devesa; Lorna Foliot; Debany Fonseca-Batista; Morgane Gallinari; Maribel I. García-Ibáñez; Arthur Gourain; Emilie Grossteffan; M. Hamon; Lars-Eric Heimbürger; Gideon M. Henderson

The GEOVIDE cruise, a collaborative project within the framework of the international GEOTRACES programme, was conducted along the French-led section in the North Atlantic Ocean (Section GA01), between 15 May and 30 June 2014. In this special issue (https://www.biogeosciences.net/special_issue900.html), results from GEOVIDE, including physical oceanography and trace element and isotope cyclings, are presented among 18 articles. Here, the scientific context, project objectives, and scientific strategy of GEOVIDE are provided, along with an overview of the main results from the articles published in the special issue. 1 Scientific context and objectives Understanding the distribution, sources, and sinks of trace elements and isotopes (TEIs) will improve our ability to understand past and present marine environments. Some TEIs are toxic (e.g. Hg), while others are essential micronutrients involved in many metabolic processes of marine organisms (e.g. Fe, Mn). The availability of TEIs therefore constrains the ocean carbon cycle and affects a range of other biogeochemical processes in the Earth system, whilst responding to and influencing global change (de Baar et al., 2005; Blain et al., 2007; Boyd et al., 2007; Pollard et al., 2007). Moreover, TEI interactions with the marine food web strongly depend on their physical (particulate/dissolved/colloidal/soluble) and chemical (organic and redox) forms. In addition, some TEIs are diagnostic in allowing the quantification of specific mechanisms in the marine environment that are challenging to measure directly. A few examples include (i) atmospheric deposition (e.g. 210Pb, Al, Mn, Th isotopes, 7Be; Baker et al., 2016; Hsieh et al., 2011; Measures and Brown, 1996); (ii) mixing rates of deep waters or shelf-to-open ocean (e.g. 231Pa/230Th,114C, Ra isotopes, 129I, 236U; van Beek et al., 2008; Casacuberta et al., 2016; Key et al., 2004); (iii) boundary exchange processes (e.g. εNd, Jeandel et al., 2011; Lacan and Jeandel, 2001, 2005); and (iv) downward flux of organic carbon and/or remineralization in deep waters (e.g. 234Th/238U, 210Pb/210Po, Baxs; Buesseler et al., 2004; Dehairs et al., 1997; Roca-Martí et al., 2016). In such settings, TEIs provide chemical constraints and allow the estimation of fluxes which was not possible before the development of their analyses. Finally, paleoceanographers are wholly dependent on the development of tracers, many of which are based on TEIs used as proxies, in order to reconstruct past environmental conditions (e.g. ocean productivity, patterns and rates of ocean circulation, ecosystem structures, ocean anoxia; Henderson, 2002). Such reconstruction efforts are essential to assess the processes involved in regulating the global climate system, and possible future climate change variability. Despite all these major implications, the distribution, sources, sinks, and internal cycling of TEIs in the oceans are still largely unknown due to the lack of appropriate clean sampling approaches and insufficient sensitivity and selectivity of the analytical measurement techniques until recently. This last point has improved very quickly as significant improvements in the instrumental techniques now allow the measurements of concentrations, speciation (physical and chemical forms), and isotopic compositions for most of the elements of the periodic table which have been identified either as relevant tracers or key nutrients in the marine environment. These recent advances provide the marine geochemistry community with a significant opportunity to make subBiogeosciences, 15, 7097–7109, 2018 www.biogeosciences.net/15/7097/2018/ G. Sarthou et al.: French GEOTRACES North Atlantic Transect (GA01) 7099 Figure 1. Schematic diagram of the mean large-scale circulation adapted from Daniault et al. (2016) and Zunino et al. (2017). Bathymetry is plotted in color with color changes at 100 and 1000 m and every 1000 m below 1000 m. Black dots represent the Short station, yellow stars the Large ones, orange stars the XLarge ones, and red stars the Super ones. The main water masses are indicated: Denmark Strait Overflow Water (DSOW), Iceland–Scotland Overflow Water (ISOW), Labrador Sea Water (LSW), Mediterranean Water (MW), and lower North East Atlantic Deep Water (LNEADW). stantial contributions to a better understanding of the marine environment. In this general context, the aim of the international GEOTRACES programme is to characterize TEI distributions on a global scale, consisting of ocean sections, and regional process studies, using a multi-proxy approach. The GEOVIDE section is the French contribution to this global survey in the North Atlantic Ocean along the OVIDE section and in the Labrador Sea (Fig. 1) and complements a range of other international cruises in the North Atlantic. GEOVIDE leans on the knowledge gained by the OVIDE project during which the Portugal–Greenland section has been carried out biennially since 2002, gathering physical and biogeochemical data from the surface to the bottom (Mercier et al., 2015; Pérez et al., 2018). Rationale for the GEOVIDE section i. The North Atlantic Ocean plays a key role in mediating the climate of the Earth. It represents a key region of the Meridional Overturning Circulation (MOC) and a major sink of anthropogenic carbon (Cant) (Pérez et al., 2013; Sabine et al., 2004; Seager et al., 2002). Since 2002, the OVIDE project has contributed to the observation of both the circulation and water mass properties of the North Atlantic Ocean. Despite the importance of the MOC on global climate, it is still challenging to assess its strength within a reasonable uncertainty (Kanzow et al., 2010; Lherminier et al., 2010). The MOC strength estimated from in situ measurements on OVIDE cruises has thus helped to validate a time series for the amplitude of the MOC (based on altimetry and ARGO float array data) that exhibits a drop of 2.5± 1.4 Sv (95 % confidence interval) between 1993 and 2010 (Mercier et al., 2015), consistent with other modelling studies (Xu et al., 2013). This time series, along with the in situ data, shows a recovery of the MOC amplitude in 2014 at a value similar to those of the mid1990s, confirming the importance of the decadal variability in the subpolar gyre. During OVIDE, the contributions of the most relevant currents, water masses, and biogeochemical provinces were localized and quantified. This knowledge was crucial for the establishment of the best strategy to sample TEIs in this specific region. In addition to the OVIDE section, the Labrador Sea section offered a unique opportunity to complement the MOC estimate, to analyse the propagation of anomalies in temperature and salinity (Reverdin et al., 1994), and to study the distribution of TEIs along the boundary current of the subpolar gyre, coupling both observations and modelling. Moreover, recent results provided evidence that CO2 uptake in the North Atlantic was reduced by the weakening of the MOC (Pérez et al., 2013). The most significant finding of this study was that the uptake of Cant occurred almost exclusively in the subtropical gyre, while natural CO2 uptake dominated in the subpolar gyre. In light of these new results, one issue to be addressed was the coupling between the Cant and the transport of water, with the aim to understand how the changes in the ventilation and in the circulation of water masses affect the Cant uptake and its storage capacity in the various identified provinces (Fröb et al., 2018). Finally, as the subpolar North Atlantic forms the starting point for the global ocean conveyor belt, it is of particular interest to investigate how TEIs are transferred to the deep ocean through both ventilation and particle sinking, and how deep convection processes impact the TEI distributions in this key region. ii. A better assessment of the factors that control organic production and export of carbon in the productive North Atlantic Ocean together with a better understanding of the role played by TEIs in these processes is research priorities. Pronounced phytoplankton blooms occur in the North Atlantic in spring in response to upwelling and water column destratification (Bury et al., 2001; Henson et al., 2009; Savidge et al., 1995). Such www.biogeosciences.net/15/7097/2018/ Biogeosciences, 15, 7097–7109, 2018 7100 G. Sarthou et al.: French GEOTRACES North Atlantic Transect (GA01) blooms are known to trigger substantial export of fastsinking particles (Lampitt, 1985), and can represent a major removal mechanism for particulate organic carbon, macronutrients, and TEIs to the deep ocean. iii. In the North Atlantic, TEI distributions are influenced by a variety of sources including, most importantly, the atmosphere and the margins (Iberian, Greenland, and Labrador margins). 1. Atmosphere. Atmospheric inputs (e.g. mineral dust, anthropogenic emission aerosols) are an important source of TEIs to the North Atlantic Ocean due to the combined effects of anthropogenic emissions from industrial/agricultural sources and mineral dust mobilized from the arid regions of North Africa (Duce et al., 2008; Jickells et al., 2005). Model and satellite data for the GEOVIDE section suggested that an approximately 10fold decrease in the atmospheric concentrations of mineral dust was expected from south to north (Mahowald et al., 2005). As there had been relatively few aerosol TEI studies in the northern North Atlantic compared to the tropical and subtropical North Atlantic prior to GEOVIDE, constraining atmospheric deposition fluxes to this region had been identified as a research priority (de Leeuw et al., 2014). During the GEOVIDE campaign, a multi-proxy approach (e.g. aerosol trace element concentrations, dissolved and particulate Al and Mn, seawater 210Pb, Fe, Nd, and Th isotopes, 7Be) was taken to achieve the objective of better constraining the atmospheric deposition fluxes of key trace elements. 2. Margins. The continental shelves can act


Marine Environmental Research | 2016

Decadal changes in zooplankton abundance and phenology of Long Island Sound reflect interacting changes in temperature and community composition

Edward Rice; Gillian Stewart

Between 1939 and 1982, several surveys indicated that zooplankton in Long Island Sound, NY (LIS) appeared to follow an annual cycle typical of the Mid-Atlantic coast of North America. Abundance peaked in both early spring and late summer and the peaks were similar in magnitude. In recent decades, this cycle appeared to have shifted. Only one large peak tended to occur, and summer copepod abundance was consistently reduced by ∼60% from 1939 to 1982 levels. In other Mid-Atlantic coastal systems such a dramatic shift has been attributed to the earlier appearance of ctenophores, particularly Mnemiopsis leidyi, during warmer spring months. However, over a decade of surveys in LIS have consistently found near-zero values in M.xa0leidyi biomass during spring months. Our multiple linear regression model indicates that summer M.xa0leidyi biomass during this decade explains <25% of the variation in summer copepod abundance. During these recent, warmer years, summer copepod community shifts appear to explain the loss of copepod abundance. Although Acartia tonsa in 2010-2011 appeared to be present all year long, it was no longer the dominant summer zooplankton species. Warmer summers have been associated with an increase in cyanobacteria and flagellates, which are not consumed efficiently by A.xa0tonsa. This suggests that in warming coastal systems multiple environmental and biological factors interact and likely underlie dramatic alterations to copepod phenology, not single causes.


Archives of Environmental Contamination and Toxicology | 2012

Assimilation of Elements and Digestion in Grass Shrimp Pre-Exposed to Dietary Mercury

David R. Seebaugh; William G. Wallace; William J. L’Amoreaux; Gillian Stewart

Grass shrimp Palaemonetes pugio were fed mercury (Hg)-contaminated oligochaetes for 15xa0days and analyzed for Hg, cadmium (Cd), and carbon assimilation efficiencies (AE) as well as toxicological end points related to digestion. Disproportionate increases in stable Hg concentrations in shrimp did not appear to be related to partitioning to trophically available Hg in worms. Hg AE by pre-exposed shrimp reached a plateau (approximately 53 %), whereas Cd AE varied (approximately 40–60 %) in a manner that was not dose-dependent. Carbon AE did not differ among treatments (approximately 69 %). Gut residence time was not impacted significantly by Hg pre-exposure (grand median approximately 465xa0min), however, there was a trend between curves showing percentages of individuals with markers in feces over time versus treatment. Feces-elimination rate did not vary with dietary pre-exposure. Extracellular protease activity varied approximately1.9-fold but did not exhibit dose-dependency. pH increased over the range of Hg pre-exposures within the anterior (pH approximately 5.33–6.51) and posterior (pH approximately 5.29–6.25) regions of the cardiac proventriculus and Hg assimilation exhibited a negative relationship to hydrogen ion concentrations. The results of this study indicate that previous Hg ingestion can elicit post-assimilatory impacts on grass shrimp digestive physiology, which may, in turn, influence Hg assimilation during subsequent digestive cycles.


Journal of Environmental Radioactivity | 2014

Linking the distribution of 210Po and 210Pb with plankton community along Line P, Northeast Subarctic Pacific

Hiu Yan Choi; Gillian Stewart; Michael W. Lomas; Roger P. Kelly; S. Bradley Moran

Depth profiles of (210)Po and (210)Pb activity and phytoplankton and zooplankton abundance were collected during two cruises along the Canadian time-series Line P in the Northeast Subarctic Pacific (ranging from 48o39xa0N to 50o00xa0N and 126o40xa0W to 145o00xa0W) in August 2010 and February 2011 to evaluate connections between the planktonic community and distributions of these radionuclides in the upper 500xa0m of the water column. Statistical analysis indicates that (210)Po is more effectively removed from the surface ocean when large (>0.1xa0mgxa0ind(-1) dry wt) zooplankton dominate, and is less effectively scavenged when the picoplankton Synechococcus is present at high concentrations (>1xa0×xa010(5)xa0cellsxa0ml(-1)). While the zooplankton field data are consistent with previous lab studies and field observations, the phytoplankton results seem to conflict with recent evidence that small cells may contribute significantly to export in other oligotrophic regions. Differences in ecosystem mechanisms between the Subarctic Pacific and other oligotrophic systems that limit the contribution of small cells to sinking flux remain to be identified.


Biogeosciences | 2014

Estimates of micro-, nano-, and picoplankton contributions to particle export in the northeast Pacific

B. L. Mackinson; S.B. Moran; Michael W. Lomas; Gillian Stewart; Roger P. Kelly


Deep Sea Research Part I: Oceanographic Research Papers | 2017

The influence of particle concentration and composition on the fractionation of 210 Po and 210 Pb along the North Atlantic GEOTRACES transect GA03

Yi Tang; Gillian Stewart; Phoebe J. Lam; Sylvain Rigaud; Thomas M. Church


Journal of Marine Systems | 2017

Temporal variability of dissolved iron species in the mesopelagic zone at Ocean Station PAPA

Christina Schallenberg; Andrew R. S. Ross; Ashley B. Davidson; Gillian Stewart; Jay T. Cullen


Biogeosciences Discussions | 2018

The export flux of particulate organic carbon derived from 210 Po / 210 Pb disequilibria along the North Atlantic GEOTRACES GA01 (GEOVIDE) transect

Yi Tang; Nolwenn Lemaitre; Maxi Castrillejo; Montserrat Roca-Martí; Pere Masqué; Gillian Stewart

Collaboration


Dive into the Gillian Stewart's collaboration.

Top Co-Authors

Avatar

Yi Tang

City University of New York

View shared research outputs
Top Co-Authors

Avatar

David R. Seebaugh

City University of New York

View shared research outputs
Top Co-Authors

Avatar

Edward Rice

City University of New York

View shared research outputs
Top Co-Authors

Avatar

Michael W. Lomas

Bigelow Laboratory For Ocean Sciences

View shared research outputs
Top Co-Authors

Avatar

Roger P. Kelly

University of Rhode Island

View shared research outputs
Top Co-Authors

Avatar

William G. Wallace

City University of New York

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Montserrat Roca-Martí

Autonomous University of Barcelona

View shared research outputs
Researchain Logo
Decentralizing Knowledge