Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gilman B. Allen is active.

Publication


Featured researches published by Gilman B. Allen.


American Journal of Respiratory and Critical Care Medicine | 2008

Nuclear Factor-κB Activation in Airway Epithelium Induces Inflammation and Hyperresponsiveness

Cristen Pantano; Jennifer L. Ather; John F. Alcorn; Matthew E. Poynter; Amy L. Brown; Amy S. Guala; Stacie L. Beuschel; Gilman B. Allen; Laurie A. Whittaker; Mieke Bevelander; Charles G. Irvin; Yvonne M. W. Janssen-Heininger

RATIONALE Nuclear factor (NF)-kappaB is a prominent proinflammatory transcription factor that plays a critical role in allergic airway disease. Previous studies demonstrated that inhibition of NF-kappaB in airway epithelium causes attenuation of allergic inflammation. OBJECTIVES We sought to determine if selective activation of NF-kappaB within the airway epithelium in the absence of other agonists is sufficient to cause allergic airway disease. METHODS A transgenic mouse expressing a doxycycline (Dox)-inducible, constitutively active (CA) version of inhibitor of kappaB (IkappaB) kinase-beta (IKKbeta) under transcriptional control of the rat CC10 promoter, was generated. MEASUREMENTS AND MAIN RESULTS After administration of Dox, expression of the CA-IKKbeta transgene induced the nuclear translocation of RelA in airway epithelium. IKKbeta-triggered activation of NF-kappaB led to an increased content of neutrophils and lymphocytes, and concomitant production of proinflammatory mediators, responses that were not observed in transgenic mice not receiving Dox, or in transgene-negative littermate control animals fed Dox. Unexpectedly, expression of the IKKbeta transgene in airway epithelium was sufficient to cause airway hyperresponsiveness and smooth muscle thickening in absence of an antigen sensitization and challenge regimen, the presence of eosinophils, or the induction of mucus metaplasia. CONCLUSIONS These findings demonstrate that selective activation NF-kappaB in airway epithelium is sufficient to induce airway hyperresponsiveness and smooth muscle thickening, which are both critical features of allergic airway disease.


Journal of Applied Physiology | 2009

The role of time and pressure on alveolar recruitment

Scott P. Albert; Joseph DiRocco; Gilman B. Allen; Jason H. T. Bates; Ryan Lafollette; Brian D. Kubiak; John Fischer; Sean Maroney; Gary F. Nieman

Inappropriate mechanical ventilation in patients with acute respiratory distress syndrome can lead to ventilator-induced lung injury (VILI) and increase the morbidity and mortality. Reopening collapsed lung units may significantly reduce VILI, but the mechanisms governing lung recruitment are unclear. We thus investigated the dynamics of lung recruitment at the alveolar level. Rats (n = 6) were anesthetized and mechanically ventilated. The lungs were then lavaged with saline to simulate acute respiratory distress syndrome (ARDS). A left thoracotomy was performed, and an in vivo microscope was placed on the lung surface. The lung was recruited to three recruitment pressures (RP) of 20, 30, or 40 cmH(2)O for 40 s while subpleural alveoli were continuously filmed. Following measurement of microscopic alveolar recruitment, the lungs were excised, and macroscopic gross lung recruitment was digitally filmed. Recruitment was quantified by computer image analysis, and data were interpreted using a mathematical model. The majority of alveolar recruitment (78.3 +/- 7.4 and 84.6 +/- 5.1%) occurred in the first 2 s (T2) following application of RP 30 and 40, respectively. Only 51.9 +/- 5.4% of the microscopic field was recruited by T2 with RP 20. There was limited recruitment from T2 to T40 at all RPs. The majority of gross lung recruitment also occurred by T2 with gradual recruitment to T40. The data were accurately predicted by a mathematical model incorporating the effects of both pressure and time. Alveolar recruitment is determined by the magnitude of recruiting pressure and length of time pressure is applied, a concept supported by our mathematical model. Such a temporal dependence of alveolar recruitment needs to be considered when recruitment maneuvers for clinical application are designed.


American Journal of Respiratory and Critical Care Medicine | 2011

Hemolytic Phospholipase C Inhibition Protects Lung Function during Pseudomonas aeruginosa Infection

Matthew J. Wargo; Maegan J. Gross; Sathish Rajamani; Jenna L. Allard; Lennart K. A. Lundblad; Gilman B. Allen; Michael L. Vasil; Laurie W. Leclair; Deborah A. Hogan

RATIONALE The opportunistic pathogen Pseudomonas aeruginosa causes both acute and chronic lung infections and is particularly problematic in patients with cystic fibrosis and those undergoing mechanical ventilation. Decreased lung function contributes significantly to morbidity and mortality during P. aeruginosa infection, and damage inflicted by P. aeruginosa virulence factors contributes to lung function decline. OBJECTIVES We sought to describe direct contribution of a bacterial phospholipase C/sphingomyelinase, PlcHR, to alteration of host lung physiology and characterize a potential therapeutic for protection of lung function. METHODS We infected C57Bl/6 mice with P. aeruginosa wild-type or isogenic plcHR deletion strains and measured lung function using computer-controlled ventilators. For in vivo testing, miltefosine was delivered intraperitoneally 1 hour after infection. Infection and respiratory endpoints were at 24 hours after infection. MEASUREMENTS AND MAIN RESULTS P. aeruginosa wild-type infection caused significant lung function impairment, whereas the effects of a ΔplcHR strain infection were much less severe. Surfactometry analysis of bronchoalveolar lavage fluid indicated that PlcHR decreased pulmonary surfactant function. Miltefosine has structural similarity to the PC and sphingomyelin substrates of PlcHR, and we found that it inhibits the cleavage of these choline-containing lipids in vitro. Miltefosine administration after P. aeruginosa infection limited the negative effects of PlcHR activity on lung function. CONCLUSIONS We have directly linked production of a single virulence factor in P. aeruginosa with effects on lung function, and demonstrated that the inhibitor miltefosine protects lung function from PlcHR-dependent surfactant dysfunction.


Annals of Biomedical Engineering | 2006

The Estimation of Lung Mechanics Parameters in the Presence of Pathology: A Theoretical Analysis

Jason H. T. Bates; Gilman B. Allen

Mechanical lung function is frequently assessed in terms of lung resistance (RL), lung elastance (EL), and airway resistance (Raw). These quantities are determined by measuring input impedance at various oscillation frequencies, and allow lung tissue resistance (Rt) to be estimated as the difference between RL and Raw. These various parameters change in characteristic ways in the presence of lung pathology. In particular, the ratio Rt/EL (known as hysteresivity, (η) has been shown both experimentally and in numerical simulations to increase when regional heterogeneities in mechanical function develop throughout the lung. In this study, we performed an analytical investigation of a two-compartment lung model and showed that while heterogeneity always leads to an increase in EL, η will increase only initially. When heterogeneity becomes extreme, η stops increasing and starts to decrease. However, there are no experimental reports of η decreasing under conditions in which heterogeneity would be expected to exist. We speculate that this is because liquid bridges invariably form across airway lumen that narrow to a certain point, thereby preventing them from achieving arbitrarily small non-zero radii. We also show that recruitment of closed lung units during lung inflation may lead to variables responses in both η and EL.


Journal of Applied Physiology | 2008

Modeling the dynamics of recruitment and derecruitment in mice with acute lung injury

Christopher B. Massa; Gilman B. Allen; Jason H. T. Bates

Lung recruitment and derecruitment contribute significantly to variations in the elastance of the respiratory system during mechanical ventilation. However, the decreases in elastance that occur with deep inflation are transient, especially in acute lung injury. Bates and Irvin (8) proposed a model of the lung that recreates time-varying changes in elastance as a result of progressive recruitment and derecruitment of lung units. The model is characterized by distributions of critical opening and closing pressures throughout the lung and by distributions of speeds with which the processes of opening and closing take place once the critical pressures have been achieved. In the present study, we adapted this model to represent a mechanically ventilated mouse. We fit the model to data collected in a previous study from control mice and mice in various stages of acid-induced acute lung injury (3). Excellent fits to the data were obtained when the normally distributed critical opening pressures were about 5 cmH(2)O above the closing pressures and when the hyperbolically distributed opening velocities were about an order of magnitude greater than the closing velocities. We also found that, compared with controls, the injured mice had markedly increased opening and closing pressures but no change in the velocities, suggesting that the key biophysical change wrought by acid injury is dysfunction of surface tension at the air-liquid interface. Our computational model of lung recruitment and derecruitment dynamics is thus capable of accurately mimicking data from mice with acute lung injury and may provide insight into the altered biophysics of the injured lung.


European Journal of Immunology | 2009

Th2 allergic immune response to inhaled fungal antigens is modulated by TLR-4-independent bacterial products.

Jenna B. Allard; Lisa Rinaldi; Matthew J. Wargo; Gilman B. Allen; Shizuo Akira; Satoshi Uematsu; Matthew E. Poynter; Deborah A. Hogan; Mercedes Rincon; Laurie A. Whittaker

Allergic airway disease is characterized by eosinophilic inflammation, mucus hypersecretion and increased airway resistance. Fungal antigens are ubiquitous within the environment and are well known triggers of allergic disease. Bacterial products are also frequently encountered within the environment and may alter the immune response to certain antigens. The consequence of simultaneous exposure to bacterial and fungal products on the lung adaptive immune response has not been explored. Here, we show that oropharyngeal aspiration of fungal lysates (Candida albicans, Aspergillus fumigatus) promotes airway eosinophilia, secretion of Th2 cytokines and mucus cell metaplasia. In contrast, oropharyngeal exposure to bacterial lysates (Pseudomonas aeruginosa) promotes airway inflammation characterized by neutrophils, Th1 cytokine secretion and no mucus production. More importantly, administration of bacterial lysates together with fungal lysates deviates the adaptive immune response to a Th1 type associated with neutrophilia and diminished mucus production. The immunomodulatory effect that bacterial lysates have on the response to fungi is TLR4 independent but MyD88 dependent. Thus, different types of microbial products within the airway can alter the hosts adaptive immune response and potentially impact the development of allergic airway disease to environmental fungal antigens.


Journal of Allergy and Therapy | 2012

The Temporal Evolution of Airways Hyperresponsiveness and Inflammation

Erik P Riesenfeld; Gilman B. Allen; Jason H. T. Bates; Matthew E. Poynter; Min Wu; Steven Aimiand; Lennart K. A. Lundblad

Airways hyperresponsiveness (AHR) is usually produced within days of first antigen exposure in mouse models of asthma. Furthermore, continual antigen challenge eventually results in the resolution of the AHR phenotype. Human asthma also waxes and wanes with time, suggesting that studying the time course of AHR in the allergic mouse would offer insights into the variation in symptoms seen in asthmatics. Mice were sensitized with ovalbumin (OVA) on days 0 and 14. As assessed by airway resistance (Rn ), lung elastance (H) and tissue damping (G), AHR was measured post an OVA inhalation on day 21 (Short Challenge group), after three days of OVA inhalation on day 25 (Standard Challenge group) and following an OVA inhalation on day 55 in mice previously challenged on days 21-23 (Recall Challenge group). Bronchoalveolar lavage was analyzed for inflammatory cells, cytokines and protein. AHR in the Short Challenge group was characterized by an increase in Rn and neutrophil accumulation in the lavage. AHR in the Standard Challenge group was characterized by increases in H and G but by only a modest response in Rn , while inflammation was eosinophilic. In the Standard Challenge protocol, mice lacking fibrinogen were no different from control in their AHR response. AHR in the Recall Challenge group was characterized by increases only in G and H and elevated numbers of both neutrophils and eosinophils. Lavage cytokines were only elevated in the Recall Challenge group. Lavage protein was significantly elevated in all groups. The phenotype in allergically inflamed mice evolves distinctly over time, both in terms of the nature of the inflammation and the location of the AHR response. The study of mouse models of AHR might be better served by focusing on this variation rather than simply on a single time point at which AHR is maximal.


Journal of Applied Physiology | 2009

Acid aspiration-induced airways hyperresponsiveness in mice

Gilman B. Allen; Timothy Leclair; Jessica A. von Reyn; Yuna C. Larrabee; Mary E. Cloutier; Charles G. Irvin; Jason H. T. Bates

The role of gastroesophageal reflux and micro-aspiration as a trigger of airways hyperresponsiveness (AHR) in patients with asthma is controversial. The role of acid reflux and aspiration as a direct cause of AHR in normal subjects is also unclear. We speculated that aspiration of a weak acid with a pH (1.8) equivalent to the upper range of typical gastric contents would lead to AHR in naive mice. We further speculated that modest reductions in aspirate acidity to a level expected during gastric acid suppression therapy (pH 4.0) would impede aspiration-induced AHR. BALB/c female mice were briefly anesthetized with isoflurane and allowed to aspirate 75 microl of saline with HCl (pH 1.8, 4.0, or 7.4) or underwent sham aspiration. Mice were re-anesthetized 2 or 24 h later, underwent tracheostomy, and were coupled to a mechanical ventilator. Forced oscillations were used to periodically measure respiratory impedance (Zrs) following aerosol delivery of saline and increasing doses of methacholine to measure for AHR. Values for elastance (H), airways resistance (R(N)), and tissue damping (G) were derived from Zrs. Aspirate pH of 1.8 led to a significant overall increase in peak R(N), G, and H compared with pH 4.0 and 7.4 at 2 and 24 h. Differences between pH 7.4 and 4.0 were not significant. In mice aspirating pH 1.8 compared with controls, airway lavage fluid contained more neutrophils, higher protein, and demonstrated higher permeability. We conclude that acid aspiration triggers an acute AHR, driven principally by breakdown of epithelial barrier integrity within the airways.


American Journal of Infection Control | 2014

A multitiered strategy of simulation training, kit consolidation, and electronic documentation is associated with a reduction in central line–associated bloodstream infections

Gilman B. Allen; Vincent Miller; Cate Nicholas; Sally Hess; Mari K. Cordes; John Fortune; Joan Blondin; Takamaru Ashikaga; Michael A. Ricci

BACKGROUND Simulation-based training has been associated with reduced central line-associated bloodstream infection (CLABSI) rates. We measured the combined effect of simulation training, electronic medical records (EMR)-based documentation, and standardized kits on CLABSI rates in our medical (MICU) and surgical (SICU) intensive care units (ICU). METHODS CLABSI events and catheter-days were collected for 19 months prior to and 37 months following an intervention consisting of simulation training in central line insertion for all ICU residents, incorporation of standardized, all-inclusive catheter kits, and EMR-guided documentation. Supervising physicians in the MICU (but not the SICU) also completed training. RESULTS Following the intervention, EMR-based documentation increased from 48% to 100%, and documented compliance with hand hygiene, barrier precautions, and chlorhexidine use increased from 65%-85% to 100%. CLABSI rate in the MICU dropped from 2.72 per 1,000 catheter-days over the 19 months preceding the intervention to 0.40 per 1,000 over the 37 months following intervention (P = .01) but did not change in the SICU (1.09 and 1.14 per 1,000 catheter-days, P = .86). This equated to 24 fewer than expected CLABSIs and


American Journal of Physiology-lung Cellular and Molecular Physiology | 2009

Neither Fibrin nor Plasminogen Activator Inhibitor-1 Deficiency Protects Lung Function in a Mouse Model of Acute Lung Injury

Gilman B. Allen; Mary E. Cloutier; Yuna C. Larrabee; Konstantin Tetenev; Stephen T. Smiley; Jason H. T. Bates

1,669,000 in estimated savings. CONCLUSION Combined simulation training, standardized all-inclusive kits, and EMR-guided documentation were associated with greater documented compliance with sterile precautions and reduced CLABSI rate in our MICU. To achieve maximal benefit, refresher training of senior physicians supervising practice at the bedside may be needed.

Collaboration


Dive into the Gilman B. Allen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joseph DiRocco

State University of New York Upstate Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge