Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gin-Shin Chen is active.

Publication


Featured researches published by Gin-Shin Chen.


Sensors and Actuators B-chemical | 1998

High sensitivity ethanol gas sensor integrated with a solid-state heater and thermal isolation improvement structure for legal drink-drive limit detecting

Jyh-Jier Ho; Yean-Kuen Fang; K.H Wu; W.T. Hsieh; Chun-Chia Chen; Gin-Shin Chen; Ming-Shaung Ju; Jing-Jenn Lin; S.B Hwang

Abstract The paper reports the successful fabrication of ethanol gas sensors with tin-dioxide (SnO 2 ) thin films integrated with a solid-state heater, which is realized with technologies of micro-electro-mechanical systems (MEMS), and are compatible with VLSI processes. The main sensing part with dimensions of 450×400 μm 2 in this developed device is composed of a sensing SnO 2 film, which is fabricated by electron-gun evaporation with proper annealing in ambient oxygen gas to yield fine particles and good structure. An integrated solid-state heater with a 4.5 μm-thick cantilever bridge (1000×500 μm 2 ) structure is made of silicon carbide (SiC) material by MEMS technologies. The sensitivity for 1000 ppm ethanol gas reaches as high as 90 with 10 s and 2 min for the response and recovery time, respectively, at an operating temperature of 300°C. Those experimental results also exhibit a much superior performance to that of a popular commercial ethanol gas sensor TGS-822. Therefore, the developed sensor with high performance is a good candidate for some specific application in automobile to detect drink-drive limit and allows an array integration available with various films for controlling each element at separate resistance.


IEEE\/ASME Journal of Microelectromechanical Systems | 2001

A contact-type piezoresistive micro-shear stress sensor for above-knee prosthesis application

Ming Chun Hsieh; Yean-Kuen Fang; Ming-Shaung Ju; Gin-Shin Chen; Jyh Jier Ho; C. H. Yang; Pei-Ming Wu; G. S. Wu; Terry Yuan Fang Chen

A prototype contact-type micro piezoresistive shear-stress sensor that can be utilized to measure the shear stress between skin of stump and socket of above-knee (AK) prosthesis was designed, fabricated and tested. Micro-electro-mechanical system (MEMS) technology has been chosen for the design because of the low cost, small size and adaptability to this application. In this paper, the finite element method (FEM) package ANSYS has been employed for the stress analysis of the micro shear-stress sensors. The sensors contain two transducers that will transform the stresses into an output voltage. In the developed sensor, a 3000/spl times/3000/spl times/300 /spl mu/m/sup 3/ square membrane is formed by bulk micromachining of an n-type [100] monolithic silicon. The piezoresistive strain gauges were implanted with boron ions with a dose of 10/sup 15/ atoms/cm/sup 2/. Static characteristics of the shear sensor were determined through a series of calibration tests. The fabricated sensor exhibits a sensitivity of 0.13 mV/mA-MPa for a 1.4 N full scales shear force range and the overall mean hysteresis error is than 3.5%. In addition, the results simulated by FEM are validated by comparison with experimental investigations.


Small | 2017

Self‐Supplying O2 through the Catalase‐Like Activity of Gold Nanoclusters for Photodynamic Therapy against Hypoxic Cancer Cells

Ching-Ping Liu; Te-Haw Wu; Chia-Yeh Liu; Kuan-Chung Chen; Yu-Xing Chen; Gin-Shin Chen; Shu-Yi Lin

Photodynamic therapy (PDT) typically involves oxygen (O2 ) consumption and therefore suffers from greatly limited anticancer therapeutic efficacy in tumor hypoxia. Here, it is reported for the first time that amine-terminated, PAMAM dendrimer-encapsulated gold nanoclusters (AuNCs-NH2 ) can produce O2 for PDT via their intrinsic catalase-like activity. The AuNCs-NH2 not only show optimum H2 O2 consumption via the catalase-like activity over the physiological pH range (i.e., pH 4.8-7.4), but also extend such activity to acidic conditions. The possible mechanism is deduced from that the enriched tertiary amines of dendrimers are easily protonated in acidic solutions to facilitate the preadsorption of OH on the metal surface, thereby favorably triggering the catalase-like reaction. By taking advantage of the exciting feature on AuNCs-NH2 , the possibility to supply O2 via the catalase-like activity of AuNCs-NH2 for PDT against hypoxia of cancer cells was further studied. This proof-of-concept study provides a simple way to combine current O2 -dependent cancer therapy of PDT to overcome cancer cell hypoxia, thus achieving more effective anticancer treatments.


Ultrasound in Medicine and Biology | 2015

High-intensity focused ultrasound attenuates neural responses of sciatic nerves isolated from normal or neuropathic rats.

Yee Fun Lee; Chou Ching K. Lin; Jung Sung Cheng; Gin-Shin Chen

Patients with diabetic neuropathy often have neuropathic pain. The purpose of our work was to investigate the effects of high-intensity focused ultrasound (HIFU) on the conduction block of normal and neuropathic nerves for soothing pain. Adult male Sprague-Dawley rats were used, and diabetes was induced by streptozotocin injection. Diabetic neuropathy was evaluated with animal behavior tests. Sciatic nerves of both control and neuropathic rats were dissected from the starting point of the sciatic nerve to the point where the sural nerve ends near the ankle. The nerves were stored in Ringers solution. The in vitro nerve was placed on a self-developed experimental platform for HIFU exposure. Stimulation and recording of the compound action potentials (CAPs) and sensory action potentials (SAPs) were performed. Control and neuropathic nerves exposed or not exposed to HIFU were submitted to histologic analysis. For the control and neuropathic nerves, suppression of CAPs and SAPs started 2 min post-HIFU treatment. Maximum suppression of SAPs was 34.4 ± 3.2% for the control rats and 11.6 ± 2.0% and 9.8 ± 3.0% for rats 4 wk post-injection and 8 wk post-injection, respectively. Time to full recovery was 25, 70 and 80 min, respectively. Histologic analysis revealed that the nerves in which CAPs and SAPs did not fully recover were damaged thermally or mechanically by HIFU. It is feasible to reversibly block nerves with appropriate HIFU treatment. Diabetic nerves were less suppressed by HIFU and were more vulnerable to permanent damage.


Sensors and Actuators A-physical | 2000

Effects of monolithic silicon postulated as an isotropic material on design of microstructures

Gin-Shin Chen; Ming-Shaung Ju; Yean-Kuen Fang

In this paper effects of the material property assumed as isotropy on the design of microstructures are discussed and examples of silicon-based micropressure sensors are illustrated. Finite Element Method (FEM) is utilized to analyze stress and displacement distributions of microstructures under loading and results of FE analysis where monolithic silicon is modeled as isotropic or anisotropic materials are compared. Moreover, in the simulations, von Mises criterion and Huber Mises criterion are adopted as yielding criterions for isotropic and anisotropic materials, respectively. The results reveal that for micropiezoresistive pressure sensors, modeling the silicon as an isotropic material will yield a design with an overestimated sensitivity when compared with the anisotropic model, which may result in the pressure sensors with lower sensitivities and performances. For microcapacitive pressure sensor, besides erroneous expectation of their sensitivities, the diaphragm of a microsensor modeled as isotropic material may touch the bottom electrode to cause the device out of work. From two examples, it is evident that the design of microstructures will be unacceptable if single-crystal silicon is postulated as the isotropic material. One can expand the research in this paper to other materials and various microsensors of MEMS.


PLOS ONE | 2014

Pharmacokinetic Changes Induced by Focused Ultrasound in Glioma-Bearing Rats as Measured by Dynamic Contrast-Enhanced MRI

Feng-Yi Yang; Chia-En Ko; Sheng-Yao Huang; I-Fang Chung; Gin-Shin Chen

Focused ultrasound (FUS) combined with microbubbles has been shown to be a noninvasive and targeted drug delivery technique for brain tumor treatment. The purpose of this study was to measure the kinetics of Gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA) in glioma-bearing rats in the presence of FUS-induced blood-brain barrier disruption (BBB-D) by magnetic resonance imaging (MRI). A total of ten glioma-bearing rats (9–12 weeks, 290–340 g) were used in this study. Using dynamic contrast-enhanced (DCE)-MRI, the spatial permeability of FUS-induced BBB-D was evaluated and the kinetic parameters were calculated by a general kinetic model (GKM). The results demonstrate that the mean K trans of the sonicated tumor (0.128±0.019 at 20 min and 0.103±0.023 at 24 h after sonication, respectively) was significantly higher than (2.46-fold at 20 min and 1.78-fold at 24 h) that of the contralateral (non-sonicated) tumor (0.052±0.019 at 20 min and 0.058±0.012 at 24 h after sonication, respectively). In addition, the transfer constant K trans in the sonicated tumor correlated strongly with tissue EB extravasation (R = 0.95), which suggests that DCE-MRI may reflect drug accumulation in the brain. Histological observations showed no macroscopic damage except for a few small erythrocyte extravasations. The current study demonstrates that DCE-MRI can monitor the dynamics of the FUS-induced BBB-D process and constitutes a useful tool for quantifying BBB permeability in tumors.


IEEE Transactions on Biomedical Engineering | 2013

Experimental Analysis of 1-3 Piezocomposites for High-Intensity Focused Ultrasound Transducer Applications

Gin-Shin Chen; Hsin-Chih Liu; Yu‑Cheng Lin; Yu-Li Lin

Piezocomposites with 1-3 connectivity have been extensively used in medical imaging transducers and high-intensity focused ultrasound transducers, but most studies of 1-3 piezocomposites address medical imaging applications. The purpose of this study was to completely investigate 1-3 composites specifically for high-power ultrasonic transducer applications via a series of experimental analyses. PZT4-epoxy composite focused transducers with various aspect ratios and volume fractions were constructed in-house for the evaluation of the coupling factor, dielectric loss tangent, quality factor, bandwidth, acoustic impedance, and electroacoustic efficiency. The experimental analyses demonstrated that although the coupling factor of composite transducers was higher than that of the ceramic transducer, the composite transducers had a lower efficiency due to the high dielectric loss and high mechanical energy loss of the composites. In addition, the bandwidth and acoustic impedance of composite transducers were superior to the ceramic transducer. For the composite transducers, the efficiency and acoustic impedance were inversely proportional to the aspect ratio and linearly proportional to the volume fraction. The coupling of inter pillars that are too close to each other could cause a significant decrease in the efficiency of the composite transducer. With an appropriate design in terms of the aspect ratio, volume fraction, and PZT-pillar spacing, a high-efficiency composite high-intensity focused ultrasound transducer can be achieved.


IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2012

Design and characterization of dual-curvature 1.5-dimensional high-intensity focused ultrasound phased-array transducer

Gin-Shin Chen; Che-Yu Lin; Jong Seob Jeong; Jonathan M. Cannata; Win-Li Lin; Hsu Chang; K. Kirk Shung

A dual-curvature focused ultrasound phased-array transducer with a symmetric control has been developed for noninvasive ablative treatment of tumors. The 1.5-D array was constructed in-house and the electro-acoustic conversion efficiency was measured to be approximately 65%. In vitro experiments demonstrated that the array uses 256 independent elements to achieve 2-D wide-range high-intensity electronic focusing.


International Journal of Electronics | 2000

Development of a microelectromechanical system pressure sensor for rehabilitation engineering applications

Jyh-Jier Ho; Yean-Kuen Fang; Ming-Chun Hsieh; Shyh-Fann Ting; Gin-Shin Chen; Ming-Shaung Ju; Terry Yuan Fang Chen; C. R. Huang; Chuin-Shan Chen

Based on computer finite-element analysis ANSYS 5.3 and microelectromechanical systems (MEMS) technologies, a micropressure sensor was designed and fabricated. The sensor can be used to measure the distribution of normal stress between soft tissues on an above-knee amputees skin and the contacting surface of a rehabilitation device. A square membrane with dimensions 2400 µm × 2400 µm × 80 µm is formed by backside photolithography and wet etching of an n-type ⟨100⟩ monolithic silicon wafer. On the middle of the membrane edge, an X-shaped silicon wafer was implanted with boron ions and then enhanced by diffusion to form a piezoresistive strain gauge. In the design process, a finite-element method is used to analyse the effects of pressure sensitivity and its temperature coefficients. The developed micropressure sensors, which have smaller weight and volume than a conventional machine type, perform well and fit our design specifications.


BJA: British Journal of Anaesthesia | 2015

Nerve conduction block in diabetic rats using high-intensity focused ultrasound for analgesic applications

Yen-Chun Lee; C. C. Lin; Jung-Sung Cheng; Gin-Shin Chen

BACKGROUND Nerve conduction block using high-intensity focused ultrasound (HIFU) has been conducted with nerves of mixed fibres in normal animal models. This study tested the feasibility and safety of HIFU for sensory nerve conduction block in diabetic neuropathic nerves to determine its potential for pain relief. METHODS Diabetes was induced in Sprague-Dawley rats using streptozotocin, and HIFU at 2.68 MHz was used for the block. This study consisted of two sections, in vitro and in vivo. For the in vitro experiments, the entire contiguous sciatic-sural nerves were obtained. Compound action potentials and sensory action potentials were recorded in the sciatic and sural nerves, respectively. For the in vivo experiments, compound muscle action potentials (CMAPs) were recorded from the gastrocnemius muscles. All data were expressed as median (range). RESULTS The in vitro results showed that HIFU temporarily inhibited sensory action potentials of the control and diabetic rat nerves to 33.9 (8.2) and 14.0 (10.7)% of the baseline values, respectively, whereas the compound action potentials were suppressed to 53.6 (8.4) and 76.2 (7.5)% of baseline, respectively. The in vivo results showed that HIFU acutely blocked CMAPs to 32.9 (12.6) and 19.9 (10.9)% of baseline in control and diabetic rat nerves, respectively. Measurements of CMAPs and histological exanmination were used for indirect assessment of the safety of the HIFU technique. CONCLUSIONS High-intensity focused ultrasound safely and reversibly suppressed nerve conduction in diabetic rat nerves when the stimulation parameters were appropriate. The results suggest that HIFU may have potential to block sensory nerves reversibly and provide peripheral pain relief.

Collaboration


Dive into the Gin-Shin Chen's collaboration.

Top Co-Authors

Avatar

Ming-Shaung Ju

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar

Win-Li Lin

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Hsu Chang

National Health Research Institutes

View shared research outputs
Top Co-Authors

Avatar

Yean-Kuen Fang

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chih-Cheng Lu

National Health Research Institutes

View shared research outputs
Top Co-Authors

Avatar

Jung-Sung Cheng

National Health Research Institutes

View shared research outputs
Top Co-Authors

Avatar

Chou Ching K. Lin

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar

Chou-Ching K. Lin

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar

Jyh-Jier Ho

National Cheng Kung University

View shared research outputs
Researchain Logo
Decentralizing Knowledge