Gina J. Fiala
University of Freiburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gina J. Fiala.
The EMBO Journal | 2012
Michael Röring; Ricarda Herr; Gina J. Fiala; Katharina Heilmann; Sandra Braun; Anja E. Eisenhardt; Sebastian Halbach; David Capper; Andreas von Deimling; Wolfgang W. A. Schamel; Darren N. Saunders; Tilman Brummer
The dimerisation of Raf kinases involves a central cluster within the kinase domain, the dimer interface (DIF). Yet, the importance of the DIF for the signalling potential of wild‐type B‐Raf (B‐Raf wt) and its oncogenic counterparts remains unknown. Here, we show that the DIF plays a pivotal role for the activity of B‐Raf wt and several of its gain‐of‐function (g‐o‐f) mutants. In contrast, the B‐Raf V600E, B‐Raf insT and B‐Raf G469A oncoproteins are remarkably resistant to mutations in the DIF. However, compared with B‐Raf wt, B‐Raf V600E displays extended protomer contacts, increased homodimerisation and incorporation into larger protein complexes. In contrast, B‐Raf wt and Raf‐1wt mediated signalling triggered by oncogenic Ras as well as the paradoxical activation of Raf‐1 by kinase‐inactivated B‐Raf require an intact DIF. Surprisingly, the B‐Raf DIF is not required for dimerisation between Raf‐1 and B‐Raf, which was inactivated by the D594A mutation, sorafenib or PLX4720. This suggests that paradoxical MEK/ERK activation represents a two‐step mechanism consisting of dimerisation and DIF‐dependent transactivation. Our data further implicate the Raf DIF as a potential target against Ras‐driven Raf‐mediated (paradoxical) ERK activation.
Journal of Visualized Experiments | 2011
Gina J. Fiala; Wolfgang W. A. Schamel; Britta Blumenthal
Multiprotein complexes (MPCs) play a crucial role in cell signalling, since most proteins can be found in functional or regulatory complexes with other proteins (Sali, Glaeser et al. 2003). Thus, the study of protein-protein interaction networks requires the detailed characterization of MPCs to gain an integrative understanding of protein function and regulation. For identification and analysis, MPCs must be separated under native conditions. In this video, we describe the analysis of MPCs by blue native polyacrylamide gel electrophoresis (BN-PAGE). BN-PAGE is a technique that allows separation of MPCs in a native conformation with a higher resolution than offered by gel filtration or sucrose density ultracentrifugation, and is therefore useful to determine MPC size, composition, and relative abundance (Schägger and von Jagow 1991); (Schägger, Cramer et al. 1994). By this method, proteins are separated according to their hydrodynamic size and shape in a polyacrylamide matrix. Here, we demonstrate the analysis of MPCs of total cellular lysates, pointing out that lysate dialysis is the crucial step to make BN-PAGE applicable to these biological samples. Using a combination of first dimension BN- and second dimension SDS-PAGE, we show that MPCs separated by BN-PAGE can be further subdivided into their individual constituents by SDS-PAGE. Visualization of the MPC components upon gel separation is performed by standard immunoblotting. As an example for MPC analysis by BN-PAGE, we chose the well-characterized eukaryotic 19S, 20S, and 26S proteasomes.
Journal of Immunology | 2013
Sumit Deswal; Anja Meyer; Gina J. Fiala; Anja E. Eisenhardt; Lisa C. Schmitt; Mogjiborahman Salek; Tilman Brummer; Oreste Acuto; Wolfgang W. A. Schamel
The activation kinetics of MAPK Erk are critical for T cell development and activation. In particular, sustained Erk signaling is required for T cell activation and effector functions, such as IL-2 production. Although Raf-1 triggers transient Erk activation, B-Raf is implicated in sustained Erk signaling after TCR stimulation. In this study, we show that B-Raf is dephosphorylated on its inhibitory serine 365 upon TCR triggering. However, it is unknown how B-Raf activation is coupled to the TCR. Using mass spectrometry, we identified protein kinase D–interacting substrate of 220 kDa (Kidins220)/ankyrin repeat-rich membrane spanning protein, mammalian target of rapamycin, Rictor, Dock2, and GM130 as novel B-Raf interaction partners. We focused on Kidins220, a protein that has been studied in neuronal cells and found that it associated with the pre-TCR, αβTCR, and γδTCR. Upon prolonged TCR stimulation, the Kidins220–TCR interaction was reduced, as demonstrated by immunoprecipitation and proximity ligation assays. We show that Kidins220 is required for TCR-induced sustained, but not transient, Erk activation. Consequently, induction of the immediate early gene products and transcription factors c-Fos and Erg-1 was blocked, and upregulation of the activation markers CD69, IL-2, and IFN-γ was reduced. Further, Kidins220 was required for optimal calcium signaling. In conclusion, we describe Kidins220 as a novel TCR-interacting protein that couples B-Raf to the TCR. Kidins220 is mandatory for sustained Erk signaling; thus, it is crucial for TCR-mediated T cell activation.
Immunotherapy | 2013
Volker Baum; Patrick Bühler; Dorothee Gierschner; Dieter Herchenbach; Gina J. Fiala; Wolfgang W. A. Schamel; Philipp Wolf; Ursula Elsässer-Beile
AIM Although prostate cancer is one of the most commonly diagnosed malignancies in men, there is no effective curative therapy for the advanced disease. Therefore, the aim of the present study was to generate prostate-specific membrane antigen (PSMA)×CD3 diabodies as a novel treatment option for this tumor. METHODS A PSMA×CD3 diabody and a covalently linked single-chain diabody were constructed from the anti-PSMA single-chain Fv fragment D7 and an anti-CD3 single-chain Fv fragment. The fusion proteins were periplasmatically expressed in Escherichia coli. The binding properties were tested on PSMA-expressing C4-2 prostate cancer cells and CD3(+) Jurkat cells by flow cytometry. For in vitro functional analysis, a cell viability assay was used. T-cell activation was determined by flow cytometry. In vivo activity of the diabody was tested in SCID mice reconstituted with human peripheral blood lymphocytes bearing C4-2 tumor xenografts. RESULTS Bacterial expression levels were significantly higher for the diabody (1-1.5 mg/l culture) compared with the single-chain diabody (0.2-0.4 mg/l culture). Specific binding on CD3-expressing Jurkat cells and PSMA-expressing C4-2 cells was shown with both diabody formats. In vitro, both diabodies proved to be potent agents for retargeting human CD4(+) and CD8(+) lymphocytes to lyse C4-2 prostate cancer cells. The formation of conjugates between T cells and target cells with clustering of the diabody at sites of interaction could be shown. SCID mice reconstituted with human peripheral blood lymphocytes bearing C4-2 tumor xenografts with the diabody showed an efficient inhibition of tumor growth. CONCLUSION Both diabody formats showed a highly efficient and specific T cell-mediated killing of prostate cancer cells and are encouraging for further development in preclinical and clinical studies.
Frontiers in Immunology | 2013
Gina J. Fiala; Daniel Kaschek; Britta Blumenthal; Michael Reth; Jens Timmer; Wolfgang W. A. Schamel
The B cell antigen receptor (BCR) plays a crucial role in adaptive immunity, since antigen-induced signaling by the BCR leads to the activation of the B cell and production of antibodies during an immune response. However, the spatial nano-scale organization of the BCR on the cell surface prior to antigen encounter is still controversial. Here, we fixed murine B cells, stained the BCRs on the cell surface with immuno-gold and visualized the distribution of the gold particles by transmission electron microscopy. Approximately 30% of the gold particles were clustered. However the low staining efficiency of 15% precluded a quantitative conclusion concerning the oligomerization state of the BCRs. To overcome this limitation, we used Monte-Carlo simulations to include or to exclude possible distributions of the BCRs. Our combined experimental-modeling approach assuming the lowest number of different BCR sizes to explain the observed gold distribution suggests that 40% of the surface IgD-BCR was present in dimers and 60% formed large laminar clusters of about 18 receptors. In contrast, a transmembrane mutant of the mIgD molecule only formed IgD-BCR dimers. Our approach complements high resolution fluorescence imaging and clearly demonstrates the existence of pre-formed BCR clusters on resting B cells, questioning the classical cross-linking model of BCR activation.
Cell Communication and Signaling | 2010
Mahima Swamy; Gabrielle M. Siegers; Gina J. Fiala; Eszter Molnar; Elaine P. Dopfer; Paul Fisch; Burkhart Schraven; Wolfgang W. A. Schamel
BackgroundStudying the stoichiometry and intracellular trafficking of the T cell antigen receptor (TCR) is pivotal in understanding its mechanisms of activation. The αβTCR includes the antigen-binding TCRαβ heterodimer as well as the signal transducing CD3εγ, CD3εδ and ζ2 subunits. Although the TCR-interacting molecule (TRIM) is also part of the αβTCR complex, it has not been included in most reports so far.ResultsWe used the native antibody-based mobility shift (NAMOS) assay in a first dimension (1D) blue native (BN)-PAGE and a 2D BN-/BN-PAGE to demonstrate that the stoichiometry of the digitonin-solublized TRIM-containing αβTCR is TCRαβCD3ε2γδζ2TRIM2. Smaller αβTCR complexes possess a TCRαβ CD3ε2γδζ2 stoichiometry. Complexes of these sizes were detected in T cell lines as well as in primary human and mouse T cells. Stimulating the αβTCR with anti-CD3 antibodies, we demonstrate by confocal laser scanning microscopy that CD3ε colocalizes with ζ and both are degraded upon prolonged stimulation, possibly within the lysosomal compartment. In contrast, a substantial fraction of TRIM does not colocalize with ζ. Furthermore, TRIM neither moves to lysosomes nor is degraded. Immunoprecipitation studies and BN-PAGE indicate that TRIM also associates with the γδTCR.ConclusionsSmall αβTCR complexes have a TCRαβ CD3ε2γδζ2 stoichiometry; whereas those associated with one TRIM dimer are TCRαβ CD3ε2γδζ2TRIM2. TRIM is differentially processed compared to CD3 and ζ subunits after T cell activation and is not degraded. The γδTCR also associates with TRIM.
Journal of Experimental Medicine | 2015
Gina J. Fiala; Iga Janowska; Fabiola Prutek; Elias Hobeika; Annyesha Satapathy; Adrian Sprenger; Thomas Plum; Maximilian Seidl; Jörn Dengjel; Michael Reth; Fabrizia Cesca; Tilman Brummer; Susana Minguet; Wolfgang W. A. Schamel
Fiala et al. report that Kidins220/ARMS is a novel interactor of the B cell antigen receptor (BCR) and its deletion impairs B cell development and B cell functioning.
Nature Immunology | 2017
Elmar Dolezal; Simona Infantino; Friedel Drepper; Theresa Börsig; Aparajita Singh; Thomas Wossning; Gina J. Fiala; Susana Minguet; Bettina Warscheid; David M. Tarlinton; Hassan Jumaa; David Medgyesi; Michael Reth
Developing pre-B cells in the bone marrow alternate between proliferation and differentiation phases. We found that protein arginine methyl transferase 1 (PRMT1) and B cell translocation gene 2 (BTG2) are critical components of the pre-B cell differentiation program. The BTG2-PRMT1 module induced a cell-cycle arrest of pre-B cells that was accompanied by re-expression of Rag1 and Rag2 and the onset of immunoglobulin light chain gene rearrangements. We found that PRMT1 methylated cyclin-dependent kinase 4 (CDK4), thereby preventing the formation of a CDK4-Cyclin-D3 complex and cell cycle progression. Moreover, BTG2 in concert with PRMT1 efficiently blocked the proliferation of BCR-ABL1-transformed pre-B cells in vitro and in vivo. Our results identify a key molecular mechanism by which the BTG2-PRMT1 module regulates pre-B cell differentiation and inhibits pre-B cell leukemogenesis.
Nature Immunology | 2017
Susana Minguet; Kathrin Kläsener; Anna-Maria Schaffer; Gina J. Fiala; Teresa Osteso-Ibáñez; Katrin Raute; Inmaculada Navarro-Lérida; Frederike A. Hartl; Maximilian Seidl; Michael Reth; Miguel A. Pozo
Caveolin-1 (Cav1) regulates the nanoscale organization and compartmentalization of the plasma membrane. Here we found that Cav1 controlled the distribution of nanoclusters of isotype-specific B cell antigen receptors (BCRs) on the surface of B cells. In mature B cells stimulated with antigen, the immunoglobulin M BCR (IgM-BCR) gained access to lipid domains enriched for GM1 glycolipids, by a process that was dependent on the phosphorylation of Cav1 by the Src family of kinases. Antigen-induced reorganization of nanoclusters of IgM-BCRs and IgD-BCRs regulated BCR signaling in vivo. In immature Cav1-deficient B cells, altered nanoscale organization of IgM-BCRs resulted in a failure of receptor editing and a skewed repertoire of B cells expressing immunoglobulin-μ heavy chains with hallmarks of poly- and auto-reactivity, which ultimately led to autoimmunity in mice. Thus, Cav1 emerges as a cell-intrinsic regulator that prevents B cell–induced autoimmunity by means of its role in plasma-membrane organization.
The EMBO Journal | 2016
Martin Köhler; Michael Röring; Björn Schorch; Katharina Heilmann; Natalie Stickel; Gina J. Fiala; Lisa C. Schmitt; Sandra Braun; Sophia Ehrenfeld; Franziska Maria Uhl; Thorsten Kaltenbacher; Florian Weinberg; Sebastian Herzog; Robert Zeiser; Wolfgang W. A. Schamel; Hassan Jumaa; Tilman Brummer
Despite being mutated in cancer and RASopathies, the role of the activation segment (AS) has not been addressed for B‐Raf signaling in vivo. Here, we generated a conditional knock‐in mouse allowing the expression of the B‐RafAVKA mutant in which the AS phosphoacceptor sites T599 and S602 are replaced by alanine residues. Surprisingly, despite producing a kinase‐impaired protein, the BrafAVKA allele does not phenocopy the lethality of Braf‐knockout or paradoxically acting knock‐in alleles. However, BrafAVKA mice display abnormalities in the hematopoietic system, a distinct facial morphology, reduced ERK pathway activity in the brain, and an abnormal gait. This phenotype suggests that maximum B‐Raf activity is required for the proper development, function, and maintenance of certain cell populations. By establishing conditional murine embryonic fibroblast cultures, we further show that MEK/ERK phosphorylation and the immediate early gene response toward growth factors are impaired in the presence of B‐RafAVKA. Importantly, alanine substitution of T599/S602 impairs the transformation potential of oncogenic non‐V600E B‐Raf mutants and a fusion protein, suggesting that blocking their phosphorylation could represent an alternative strategy to ATP‐competitive inhibitors.