Daniel Kaschek
University of Freiburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniel Kaschek.
PLOS ONE | 2013
Andreas Raue; Marcel Schilling; Julie Bachmann; Andrew Matteson; Max Schelke; Daniel Kaschek; Sabine Hug; Clemens Kreutz; Brian D. Harms; Fabian J. Theis; Ursula Klingmüller; Jens Timmer
Due to the high complexity of biological data it is difficult to disentangle cellular processes relying only on intuitive interpretation of measurements. A Systems Biology approach that combines quantitative experimental data with dynamic mathematical modeling promises to yield deeper insights into these processes. Nevertheless, with growing complexity and increasing amount of quantitative experimental data, building realistic and reliable mathematical models can become a challenging task: the quality of experimental data has to be assessed objectively, unknown model parameters need to be estimated from the experimental data, and numerical calculations need to be precise and efficient. Here, we discuss, compare and characterize the performance of computational methods throughout the process of quantitative dynamic modeling using two previously established examples, for which quantitative, dose- and time-resolved experimental data are available. In particular, we present an approach that allows to determine the quality of experimental data in an efficient, objective and automated manner. Using this approach data generated by different measurement techniques and even in single replicates can be reliably used for mathematical modeling. For the estimation of unknown model parameters, the performance of different optimization algorithms was compared systematically. Our results show that deterministic derivative-based optimization employing the sensitivity equations in combination with a multi-start strategy based on latin hypercube sampling outperforms the other methods by orders of magnitude in accuracy and speed. Finally, we investigated transformations that yield a more efficient parameterization of the model and therefore lead to a further enhancement in optimization performance. We provide a freely available open source software package that implements the algorithms and examples compared here.
Molecular Systems Biology | 2014
Julie Bachmann; Andreas Raue; Marcel Schilling; Martin Böhm; Clemens Kreutz; Daniel Kaschek; Hauke Busch; Norbert Gretz; Wolf D. Lehmann; Jens Timmer; Ursula Klingmüller
Cellular signal transduction is governed by multiple feedback mechanisms to elicit robust cellular decisions. The specific contributions of individual feedback regulators, however, remain unclear. Based on extensive time‐resolved data sets in primary erythroid progenitor cells, we established a dynamic pathway model to dissect the roles of the two transcriptional negative feedback regulators of the suppressor of cytokine signaling (SOCS) family, CIS and SOCS3, in JAK2/STAT5 signaling. Facilitated by the model, we calculated the STAT5 response for experimentally unobservable Epo concentrations and provide a quantitative link between cell survival and the integrated response of STAT5 in the nucleus. Model predictions show that the two feedbacks CIS and SOCS3 are most effective at different ligand concentration ranges due to their distinct inhibitory mechanisms. This divided function of dual feedback regulation enables control of STAT5 responses for Epo concentrations that can vary 1000‐fold in vivo. Our modeling approach reveals dose‐dependent feedback control as key property to regulate STAT5‐mediated survival decisions over a broad range of ligand concentrations.
FEBS Journal | 2013
Clemens Kreutz; Andreas Raue; Daniel Kaschek; Jens Timmer
Inferring knowledge about biological processes by a mathematical description is a major characteristic of Systems Biology. To understand and predict systems behavior the available experimental information is translated into a mathematical model. Since the availability of experimental data is often limited and measurements contain noise, it is essential to appropriately translate experimental uncertainty to model parameters as well as to model predictions. This is especially important in Systems Biology because typically large and complex models are applied and therefore the limited experimental knowledge might yield weakly specified model components. Likelihood profiles have been recently suggested and applied in the Systems Biology for assessing parameter and prediction uncertainty. In this article, the profile likelihood concept is reviewed and the potential of the approach is demonstrated for a model of the erythropoietin (EPO) receptor.
Frontiers in Physiology | 2012
Rene Meyer; Lorenza A. D'Alessandro; Sandip Kar; Bernhard Kramer; Bin She; Daniel Kaschek; Bettina Hahn; David Wrangborg; Johan Karlsson; Mats Kvarnström; Mats Jirstrand; Wolf D. Lehmann; Jens Timmer; Thomas Höfer; Ursula Klingmüller
In most solid cancers, cells harboring oncogenic mutations represent only a sub-fraction of the entire population. Within this sub-fraction the expression level of mutated proteins can vary significantly due to cellular variability limiting the efficiency of targeted therapy. To address the causes of the heterogeneity, we performed a systematic analysis of one of the most frequently mutated pathways in cancer cells, the phosphatidylinositol 3 kinase (PI3K) signaling pathway. Among others PI3K signaling is activated by the hepatocyte growth factor (HGF) that regulates proliferation of hepatocytes during liver regeneration but also fosters tumor cell proliferation. HGF-mediated responses of PI3K signaling were monitored both at the single cell and cell population level in primary mouse hepatocytes and in the hepatoma cell line Hepa1_6. Interestingly, we observed that the HGF-mediated AKT responses at the level of individual cells is rather heterogeneous. However, the overall average behavior of the single cells strongly resembled the dynamics of AKT activation determined at the cell population level. To gain insights into the molecular cause for the observed heterogeneous behavior of individual cells, we employed dynamic mathematical modeling in a stochastic framework. Our analysis demonstrated that intrinsic noise was not sufficient to explain the observed kinetic behavior, but rather the importance of extrinsic noise has to be considered. Thus, distinct from gene expression in the examined signaling pathway fluctuations of the reaction rates has only a minor impact whereas variability in the concentration of the various signaling components even in a clonal cell population is a key determinant for the kinetic behavior.
BioTechniques | 2014
Silvia von der Heyde; Johanna Sonntag; Daniel Kaschek; Christian Bender; Johannes Bues; Astrid Wachter; Jens Timmer; Ulrike Korf; Tim Beißbarth
Analysis of large-scale proteomic data sets requires specialized software tools, tailored toward the requirements of individual approaches. Here we introduce an extension of an open-source software solution for analyzing reverse phase protein array (RPPA) data. The R package RPPanalyzer was designed for data preprocessing followed by basic statistical analyses and proteomic data visualization. In this update, we merged relevant data preprocessing steps into a single user-friendly function and included a new method for background noise correction as well as new methods for noise estimation and averaging of replicates to transform data in such a way that they can be used as input for a new time course plotting function. We demonstrate the robustness of our enhanced RPPanalyzer platform by analyzing longitudinal RPPA data of MET receptor signaling upon stimulation with different hepatocyte growth factor concentrations.
Frontiers in Immunology | 2013
Gina J. Fiala; Daniel Kaschek; Britta Blumenthal; Michael Reth; Jens Timmer; Wolfgang W. A. Schamel
The B cell antigen receptor (BCR) plays a crucial role in adaptive immunity, since antigen-induced signaling by the BCR leads to the activation of the B cell and production of antibodies during an immune response. However, the spatial nano-scale organization of the BCR on the cell surface prior to antigen encounter is still controversial. Here, we fixed murine B cells, stained the BCRs on the cell surface with immuno-gold and visualized the distribution of the gold particles by transmission electron microscopy. Approximately 30% of the gold particles were clustered. However the low staining efficiency of 15% precluded a quantitative conclusion concerning the oligomerization state of the BCRs. To overcome this limitation, we used Monte-Carlo simulations to include or to exclude possible distributions of the BCRs. Our combined experimental-modeling approach assuming the lowest number of different BCR sizes to explain the observed gold distribution suggests that 40% of the surface IgD-BCR was present in dimers and 60% formed large laminar clusters of about 18 receptors. In contrast, a transmembrane mutant of the mIgD molecule only formed IgD-BCR dimers. Our approach complements high resolution fluorescence imaging and clearly demonstrates the existence of pre-formed BCR clusters on resting B cells, questioning the classical cross-linking model of BCR activation.
PLOS ONE | 2016
T. Maiwald; Helge Hass; Bernhard Steiert; J Joep Vanlier; Raphael Engesser; Andreas Raue; Friederike Kipkeew; Hans H. Bock; Daniel Kaschek; Clemens Kreutz; Jens Timmer
In systems biology, one of the major tasks is to tailor model complexity to information content of the data. A useful model should describe the data and produce well-determined parameter estimates and predictions. Too small of a model will not be able to describe the data whereas a model which is too large tends to overfit measurement errors and does not provide precise predictions. Typically, the model is modified and tuned to fit the data, which often results in an oversized model. To restore the balance between model complexity and available measurements, either new data has to be gathered or the model has to be reduced. In this manuscript, we present a data-based method for reducing non-linear models. The profile likelihood is utilised to assess parameter identifiability and designate likely candidates for reduction. Parameter dependencies are analysed along profiles, providing context-dependent suggestions for the type of reduction. We discriminate four distinct scenarios, each associated with a specific model reduction strategy. Iterating the presented procedure eventually results in an identifiable model, which is capable of generating precise and testable predictions. Source code for all toy examples is provided within the freely available, open-source modelling environment Data2Dynamics based on MATLAB available at http://www.data2dynamics.org/, as well as the R packages dMod/cOde available at https://github.com/dkaschek/. Moreover, the concept is generally applicable and can readily be used with any software capable of calculating the profile likelihood.
BMC Systems Biology | 2010
Andrea C Pfeifer; Daniel Kaschek; Julie Bachmann; Ursula Klingmüller; Jens Timmer
BackgroundHigh-quality quantitative data is a major limitation in systems biology. The experimental data used in systems biology can be assigned to one of the following categories: assays yielding average data of a cell population, high-content single cell measurements and high-throughput techniques generating single cell data for large cell populations. For modeling purposes, a combination of data from different categories is highly desirable in order to increase the number of observable species and processes and thereby maximize the identifiability of parameters.ResultsIn this article we present a method that combines the power of high-content single cell measurements with the efficiency of high-throughput techniques. A calibration on the basis of identical cell populations measured by both approaches connects the two techniques. We develop a mathematical model to relate quantities exclusively observable by high-content single cell techniques to those measurable with high-content as well as high-throughput methods. The latter are defined as free variables, while the variables measurable with only one technique are described in dependence of those. It is the combination of data calibration and model into a single method that makes it possible to determine quantities only accessible by single cell assays but using high-throughput techniques. As an example, we apply our approach to the nucleocytoplasmic transport of STAT5B in eukaryotic cells.ConclusionsThe presented procedure can be generally applied to systems that allow for dividing observables into sets of free quantities, which are easily measurable, and variables dependent on those. Hence, it extends the information content of high-throughput methods by incorporating data from high-content measurements.
Frontiers in Cell and Developmental Biology | 2016
Marcus Rosenblatt; Jens Timmer; Daniel Kaschek
Ordinary differential equation models have become a wide-spread approach to analyze dynamical systems and understand underlying mechanisms. Model parameters are often unknown and have to be estimated from experimental data, e.g., by maximum-likelihood estimation. In particular, models of biological systems contain a large number of parameters. To reduce the dimensionality of the parameter space, steady-state information is incorporated in the parameter estimation process. For non-linear models, analytical steady-state calculation typically leads to higher-order polynomial equations for which no closed-form solutions can be obtained. This can be circumvented by solving the steady-state equations for kinetic parameters, which results in a linear equation system with comparatively simple solutions. At the same time multiplicity of steady-state solutions is avoided, which otherwise is problematic for optimization. When solved for kinetic parameters, however, steady-state constraints tend to become negative for particular model specifications, thus, generating new types of optimization problems. Here, we present an algorithm based on graph theory that derives non-negative, analytical steady-state expressions by stepwise removal of cyclic dependencies between dynamical variables. The algorithm avoids multiple steady-state solutions by construction. We show that our method is applicable to most common classes of biochemical reaction networks containing inhibition terms, mass-action and Hill-type kinetic equations. Comparing the performance of parameter estimation for different analytical and numerical methods of incorporating steady-state information, we show that our approach is especially well-tailored to guarantee a high success rate of optimization.
Bioinformatics | 2016
Helge Hass; Clemens Kreutz; Jens Timmer; Daniel Kaschek
MOTIVATION To gain a deeper understanding of biological processes and their relevance in disease, mathematical models are built upon experimental data. Uncertainty in the data leads to uncertainties of the models parameters and in turn to uncertainties of predictions. Mechanistic dynamic models of biochemical networks are frequently based on nonlinear differential equation systems and feature a large number of parameters, sparse observations of the model components and lack of information in the available data. Due to the curse of dimensionality, classical and sampling approaches propagating parameter uncertainties to predictions are hardly feasible and insufficient. However, for experimental design and to discriminate between competing models, prediction and confidence bands are essential. To circumvent the hurdles of the former methods, an approach to calculate a profile likelihood on arbitrary observations for a specific time point has been introduced, which provides accurate confidence and prediction intervals for nonlinear models and is computationally feasible for high-dimensional models. RESULTS In this article, reliable and smooth point-wise prediction and confidence bands to assess the models uncertainty on the whole time-course are achieved via explicit integration with elaborate correction mechanisms. The corresponding system of ordinary differential equations is derived and tested on three established models for cellular signalling. An efficiency analysis is performed to illustrate the computational benefit compared with repeated profile likelihood calculations at multiple time points. AVAILABILITY AND IMPLEMENTATION The integration framework and the examples used in this article are provided with the software package Data2Dynamics, which is based on MATLAB and freely available at http://www.data2dynamics.org CONTACT [email protected] SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.