Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gina Lee is active.

Publication


Featured researches published by Gina Lee.


Cell | 2009

Conserved MicroRNA miR-8/miR-200 and Its Target USH/FOG2 Control Growth by Regulating PI3K

Seogang Hyun; Junghyun Lee; Hua Jin; Jin-Wu Nam; Bumjin Namkoong; Gina Lee; Jongkyeong Chung; V. Narry Kim

How body size is determined is a long-standing question in biology, yet its regulatory mechanisms remain largely unknown. Here, we find that a conserved microRNA miR-8 and its target, USH, regulate body size in Drosophila. miR-8 null flies are smaller in size and defective in insulin signaling in fat body that is the fly counterpart of liver and adipose tissue. Fat body-specific expression and clonal analyses reveal that miR-8 activates PI3K, thereby promoting fat cell growth cell-autonomously and enhancing organismal growth non-cell-autonomously. Comparative analyses identify USH and its human homolog, FOG2, as the targets of fly miR-8 and human miR-200, respectively. USH/FOG2 inhibits PI3K activity, suppressing cell growth in both flies and humans. FOG2 directly binds to p85alpha, the regulatory subunit of PI3K, and interferes with the formation of a PI3K complex. Our study identifies two novel regulators of insulin signaling, miR-8/miR-200 and USH/FOG2, and suggests their roles in adolescent growth, aging, and cancer.


Biochemical and Biophysical Research Communications | 2009

The PINK1-Parkin pathway is involved in the regulation of mitochondrial remodeling process

Jeehye Park; Gina Lee; Jongkyeong Chung

The two Parkinsons disease (PD) genes, PTEN-induced kinase 1 (PINK1) and parkin, are linked in a common pathway which affects mitochondrial integrity and function. However, it is still not known what this pathway does in the mitochondria. Therefore, we investigated its physiological function in Drosophila. Because Drosophila PINK1 and parkin mutants show changes in mitochondrial morphology in both indirect flight muscles and dopaminergic neurons, we here investigated whether the PINK1-Parkin pathway genetically interacts with the regulators of mitochondrial fusion and fission such as Drp1, which promotes mitochondrial fission, and Opa1 or Marf, which induces mitochondrial fusion. Surprisingly, DrosophilaPINK1 and parkin mutant phenotypes were markedly suppressed by overexpression of Drp1 or downregulation of Opa1 or Marf, indicating that the PINK1-Parkin pathway regulates mitochondrial remodeling process in the direction of promoting mitochondrial fission. Therefore, we strongly suggest that mitochondrial fusion and fission process could be a prominent therapeutic target for the treatment of PD.


EMBO Reports | 2007

ATG1, an autophagy regulator, inhibits cell growth by negatively regulating S6 kinase

Sung Bae Lee; Sunhong Kim; Jiwoon Lee; Jeehye Park; Gina Lee; Yongsung Kim; Jin-Man Kim; Jongkyeong Chung

It has been proposed that cell growth and autophagy are coordinated in response to cellular nutrient status, but the relationship between them is not fully understood. Here, we have characterized the fly mutants of Autophagy‐specific gene 1 (ATG1), an autophagy‐regulating kinase, and found that ATG1 is a negative regulator of the target of rapamycin (TOR)/S6 kinase (S6K) pathway. Our Drosophila studies have shown that ATG1 inhibits TOR/S6K‐dependent cell growth and development by interfering with S6K activation. Consistently, overexpression of ATG1 in mammalian cells also markedly inhibits S6K in a kinase activity‐dependent manner, and short interfering RNA‐mediated knockdown of ATG1 induces ectopic activation of S6K and S6 phosphorylation. Moreover, we demonstrated that ATG1 specifically inhibits S6K activity by blocking phosphorylation of S6K at Thr 389. Taken together, our genetic and biochemical results strongly indicate crosstalk between autophagy and cell growth regulation.


Nature Structural & Molecular Biology | 2010

A metazoan ortholog of SpoT hydrolyzes ppGpp and functions in starvation responses.

Dawei Sun; Gina Lee; Jun Hee Lee; Hye Yeon Kim; Hyun Woo Rhee; Seung Yeol Park; Kyung Jin Kim; Yongsung Kim; Bo Yeon Kim; Jong-In Hong; Chankyu Park; Hyon E. Choy; Jung Hoe Kim; Young Ho Jeon; Jongkyeong Chung

In nutrient-starved bacteria, RelA and SpoT proteins have key roles in reducing cell growth and overcoming stresses. Here we identify functional SpoT orthologs in metazoa (named Mesh1, encoded by HDDC3 in human and Q9VAM9 in Drosophila melanogaster) and reveal their structures and functions. Like the bacterial enzyme, Mesh1 proteins contain an active site for ppGpp hydrolysis and a conserved His-Asp–box motif for Mn2+ binding. Consistent with these structural data, Mesh1 efficiently catalyzes hydrolysis of guanosine 3′,5′-diphosphate (ppGpp) both in vitro and in vivo. Mesh1 also suppresses SpoT-deficient lethality and RelA-induced delayed cell growth in bacteria. Notably, deletion of Mesh1 (Q9VAM9) in Drosophila induces retarded body growth and impaired starvation resistance. Microarray analyses reveal that the amino acid–starved Mesh1 null mutant has highly downregulated DNA and protein synthesis–related genes and upregulated stress-responsible genes. These data suggest that metazoan SpoT orthologs have an evolutionarily conserved function in starvation responses.


Molecular Cell | 2011

DNA Damage-Induced RORα Is Crucial for p53 Stabilization and Increased Apoptosis

Hyun-Kyung Kim; Ji Min Lee; Gina Lee; Jinhyuk Bhin; Se Kyu Oh; Kyeongkyu Kim; Ki Eun Pyo; Jason S. Lee; Hwa Young Yim; Keun Il Kim; Daehee Hwang; Jongkyeong Chung; Sung Hee Baek

A critical component of the DNA damage response is the p53 tumor suppressor, and aberrant p53 function leads to uncontrolled cell proliferation and malignancy. Several molecules have been shown to regulate p53 stability; however, genome-wide systemic approaches for determining the affected, specific downstream target genes have not been extensively studied. Here, we first identified an orphan nuclear receptor, RORα, as a direct target gene of p53, which contains functional p53 response elements. The functional consequences of DNA damage-induced RORα are to stabilize p53 and activate p53 transcription in a HAUSP/Usp7-dependent manner. Interestingly, microarray analysis revealed that RORα-mediated p53 stabilization leads to the activation of a subset of p53 target genes that are specifically involved in apoptosis. We further confirmed that RORα enhances p53-dependent, in vivo apoptotic function in the Drosophila model system. Together, we determined that RORα is a p53 regulator that exerts its role in increased apoptosis via p53.


Developmental Biology | 2011

UVRAG is required for organ rotation by regulating Notch endocytosis in Drosophila

Gina Lee; Chengyu Liang; Gihyun Park; Cholsoon Jang; Jae U. Jung; Jongkyeong Chung

Heterotaxy characterized by abnormal left-right body asymmetry causes diverse congenital anomalies. Organ rotation is a crucial developmental process to establish the left-right patterning during animal development. However, the molecular basis of how organ rotation is regulated is poorly understood. Here we report that Drosophila UV-resistance associated gene (UVRAG), a tumor suppressor that regulates autophagy and endocytosis, plays unexpected roles in controlling organ rotation. Loss-of-function mutants of UVRAG show seriously impaired organ rotation phenotypes, which are associated with defects in endocytic trafficking rather than autophagy. Blunted endocytic degradation by UVRAG deficiency causes endosomal accumulation of Notch, resulting in abnormally enhanced Notch activity. Knockdown of Notch itself or expression of a dominant negative form of Notch transcriptional co-activator Mastermind is sufficient to rescue the rotation defect in UVRAG mutants. Consistently, UVRAG-mutated heterotaxy patient cells also display highly increased Notch protein levels. These results suggest evolutionarily conserved roles of UVRAG in organ rotation by regulating Notch endocytic degradation.


Journal of Cell Biology | 2008

LKB1 induces apical trafficking of Silnoon, a monocarboxylate transporter, in Drosophila melanogaster

Cholsoon Jang; Gina Lee; Jongkyeong Chung

Silnoon (Sln) is a monocarboxylate transporter (MCT) that mediates active transport of metabolic monocarboxylates such as butyrate and lactate. Here, we identify Sln as a novel LKB1-interacting protein using Drosophila melanogaster genetic modifier screening. Sln expression does not affect cell cycle progression or cell size but specifically enhances LKB1-dependent apoptosis and tissue size reduction. Conversely, down-regulation of Sln suppresses LKB1-dependent apoptosis, implicating Sln as a downstream mediator of LKB1. The kinase activity of LKB1 induces apical trafficking of Sln in polarized cells, and LKB1-dependent Sln trafficking is crucial for triggering apoptosis induced by extracellular butyrate. Given that LKB1 functions to control both epithelial polarity and cell death, we propose Sln is an important downstream target of LKB1.


Cell | 2017

Post-transcriptional Regulation of De Novo Lipogenesis by mTORC1-S6K1-SRPK2 Signaling

Gina Lee; Yuxiang Zheng; Sungyun Cho; Cholsoon Jang; Christina England; Jamie M. Dempsey; Yonghao Yu; Xiaolei Liu; Long He; Paola Cavaliere; Andre Chavez; Erik Zhang; Meltem Isik; Anthony D. Couvillon; Noah Dephoure; T. Keith Blackwell; Jane Yu; Joshua D. Rabinowitz; Lewis C. Cantley; John Blenis

mTORC1 is a signal integrator and master regulator of cellular anabolic processes linked to cell growth and survival. Here, we demonstrate that mTORC1 promotes lipid biogenesis via SRPK2, a key regulator of RNA-binding SR proteins. mTORC1-activated S6K1 phosphorylates SRPK2 at Ser494, which primes Ser497 phosphorylation by CK1. These phosphorylation events promote SRPK2 nuclear translocation and phosphorylation of SR proteins. Genome-wide transcriptome analysis reveals that lipid biosynthetic enzymes are among the downstream targets of mTORC1-SRPK2 signaling. Mechanistically, SRPK2 promotes SR protein binding to U1-70K to induce splicing of lipogenic pre-mRNAs. Inhibition of this signaling pathway leads to intron retention of lipogenic genes, which triggers nonsense-mediated mRNA decay. Genetic or pharmacological inhibition of SRPK2 blunts de novo lipid synthesis, thereby suppressing cell growth. These results thus reveal a novel role of mTORC1-SRPK2 signaling in post-transcriptional regulation of lipid metabolism and demonstrate that SRPK2 is a potential therapeutic target for mTORC1-driven metabolic disorders.


Journal of Hepatology | 2016

PP2Acα positively regulates the termination of liver regeneration in mice through the AKT/GSK3β/Cyclin D1 pathway

Shan-Shan Lai; Dan-Dan Zhao; Peng Cao; Ke Lu; Ouyang Luo; Wei-Bo Chen; Jia Liu; En-Ze Jiang; Zi-Han Yu; Gina Lee; Jing Li; Decai Yu; Xiao-Jun Xu; Min-Sheng Zhu; Xiang Gao; Chao-Jun Li; Bin Xue

BACKGROUND & AIMS Liver injury triggers a highly organized and ordered liver regeneration (LR) process. Once regeneration is complete, a stop signal ensures that the regenerated liver is an appropriate functional size. The inhibitors and stop signals that regulate LR are unknown, and only limited information is available about these mechanisms. METHODS A 70% partial hepatectomy (PH) was performed in hepatocyte-specific PP2Acα-deleted (PP2Acα(-/-)) and control (PP2Acα(+/+)) mice. LR was estimated by liver weight, serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels and cell proliferation, and the related cellular signals were analyzed. RESULTS We found that the catalytic subunit of PP2A was markedly upregulated during the late stage of LR. PP2Acα(-/-) mice showed prolonged LR termination, an increased liver size compared to the original mass and lower levels of serum ALT and AST compared with control mice. In these mice, cyclin D1 protein levels, but not mRNA levels, were increased. Mechanistically, AKT activated by the loss of PP2Acα inhibited glycogen synthase kinase 3β (GSK3β) activity, which led to the accumulation of cyclin D1 protein and accelerated hepatocyte proliferation at the termination stage. Treatment with the PI3K inhibitor wortmannin at the termination stage was sufficient to inhibit cyclin D1 accumulation and hepatocyte proliferation. CONCLUSIONS PP2Acα plays an essential role in the proper termination of LR via the AKT/GSK3β/Cyclin D1 pathway. Our findings enrich the understanding of the molecular mechanism that controls the termination of LR and provides a potential therapeutic target for treating liver injury.


Molecular Cell | 2014

Akt-ivation of RNA Splicing

Gina Lee; John Blenis

Cells must tightly control alternative splicing of RNA to maintain homeostasis; in this issue of Molecular Cell, Sanidas et al. (2014) provide new insights into the regulation of RNA splicing by Akt isoforms through phosphorylation of histone modification machinery.

Collaboration


Dive into the Gina Lee's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bo Yeon Kim

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge