Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gina M. Sizemore is active.

Publication


Featured researches published by Gina M. Sizemore.


Nature Reviews Cancer | 2017

The ETS family of oncogenic transcription factors in solid tumours

Gina M. Sizemore; Jason R. Pitarresi; Subhasree Balakrishnan; Michael C. Ostrowski

Findings over the past decade have identified aberrant activation of the ETS transcription factor family throughout all stages of tumorigenesis. Specifically in solid tumours, gene rearrangement and amplification, feed-forward growth factor signalling loops, formation of gain-of-function co-regulatory complexes and novel cis-acting mutations in ETS target gene promoters can result in increased ETS activity. In turn, pro-oncogenic ETS signalling enhances tumorigenesis through a broad mechanistic toolbox that includes lineage specification and self-renewal, DNA damage and genome instability, epigenetics and metabolism. This Review discusses these different mechanisms of ETS activation and subsequent oncogenic implications, as well as the clinical utility of ETS factors.


Neoplasia | 2017

Stromal PDGFR-α Activation Enhances Matrix Stiffness, Impedes Mammary Ductal Development, and Accelerates Tumor Growth

Anisha M. Hammer; Gina M. Sizemore; Vasudha C. Shukla; Alex Avendano; Steven T. Sizemore; Jonathan J. Chang; Raleigh D. Kladney; Maria C. Cuitiño; Katie Thies; Quinn Verfurth; Arnab Chakravarti; Lisa D. Yee; Gustavo Leone; Jonathan W. Song; Samir N. Ghadiali; Michael C. Ostrowski

The extracellular matrix (ECM) is critical for mammary ductal development and differentiation, but how mammary fibroblasts regulate ECM remodeling remains to be elucidated. Herein, we used a mouse genetic model to activate platelet derived growth factor receptor-alpha (PDGFRα) specifically in the stroma. Hyperactivation of PDGFRα in the mammary stroma severely hindered pubertal mammary ductal morphogenesis, but did not interrupt the lobuloalveolar differentiation program. Increased stromal PDGFRα signaling induced mammary fat pad fibrosis with a corresponding increase in interstitial hyaluronic acid (HA) and collagen deposition. Mammary fibroblasts with PDGFRα hyperactivation also decreased hydraulic permeability of a collagen substrate in an in vitro microfluidic device assay, which was mitigated by inhibition of either PDGFRα or HA. Fibrosis seen in this model significantly increased the overall stiffness of the mammary gland as measured by atomic force microscopy. Further, mammary tumor cells injected orthotopically in the fat pads of mice with stromal activation of PDGFRα grew larger tumors compared to controls. Taken together, our data establish that aberrant stromal PDGFRα signaling disrupts ECM homeostasis during mammary gland development, resulting in increased mammary stiffness and increased potential for tumor growth.


Genes & Development | 2016

Genetic ablation of Smoothened in pancreatic fibroblasts increases acinar–ductal metaplasia

Xin Liu; Jason R. Pitarresi; Maria C. Cuitiño; Raleigh D. Kladney; Sarah Woelke; Gina M. Sizemore; Sunayana G. Nayak; Onur Egriboz; Patrick G. Schweickert; Lianbo Yu; Stefan Trela; Daniel J. Schilling; Shannon K. Halloran; Maokun Li; Shourik Dutta; Soledad Fernandez; Thomas J. Rosol; Gregory B. Lesinski; Reena Shakya; Thomas Ludwig; Stephen F. Konieczny; Gustavo Leone; Jinghai Wu; Michael C. Ostrowski

The contribution of the microenvironment to pancreatic acinar-to-ductal metaplasia (ADM), a preneoplastic transition in oncogenic Kras-driven pancreatic cancer progression, is currently unclear. Here we show that disruption of paracrine Hedgehog signaling via genetic ablation of Smoothened (Smo) in stromal fibroblasts in a Kras(G12D) mouse model increased ADM. Smo-deleted fibroblasts had higher expression of transforming growth factor-α (Tgfa) mRNA and secreted higher levels of TGFα, leading to activation of EGFR signaling in acinar cells and increased ADM. The mechanism involved activation of AKT and noncanonical activation of the GLI family transcription factor GLI2. GLI2 was phosphorylated at Ser230 in an AKT-dependent fashion and directly regulated Tgfa expression in fibroblasts lacking Smo Additionally, Smo-deleted fibroblasts stimulated the growth of Kras(G12D)/Tp53(R172H) pancreatic tumor cells in vivo and in vitro. These results define a non-cell-autonomous mechanism modulating Kras(G12D)-driven ADM that is balanced by cross-talk between Hedgehog/SMO and AKT/GLI2 pathways in stromal fibroblasts.


Oncogene | 2017

Stromal PTEN inhibits the expansion of mammary epithelial stem cells through Jagged-1

Gina M. Sizemore; Subhasree Balakrishnan; Anisha M. Hammer; Katie Thies; Anthony J. Trimboli; Julie A. Wallace; Steven T. Sizemore; Raleigh D. Kladney; Sarah Woelke; Lianbo Yu; Soledad Fernandez; Arnab Chakravarti; Gustavo Leone; Michael C. Ostrowski

Fibroblasts within the mammary tumor microenvironment are active participants in carcinogenesis mediating both tumor initiation and progression. Our group has previously demonstrated that genetic loss of phosphatase and tensin homolog (PTEN) in mammary fibroblasts induces an oncogenic secretome that remodels the extracellular milieu accelerating ErbB2-driven mammary tumor progression. While these prior studies highlighted a tumor suppressive role for stromal PTEN, how the adjacent normal epithelium transforms in response to PTEN loss was not previously addressed. To identify these early events, we have evaluated both phenotypic and genetic changes within the pre-neoplastic mammary epithelium of mice with and without stromal PTEN expression. We report that fibroblast-specific PTEN deletion greatly restricts mammary ductal elongation and induces aberrant alveolar side-branching. These mice concomitantly exhibit an expansion of the mammary epithelial stem cell (MaSC) enriched basal/myoepithelial population and an increase in in vitro stem cell activity. Further analysis revealed that NOTCH signaling, specifically through NOTCH3, is diminished in these cells. Mechanistically, JAGGED-1, a transmembrane ligand for the NOTCH receptor, is downregulated in the PTEN-null fibroblasts leading to a loss in the paracrine activation of NOTCH signaling from the surrounding stroma. Reintroduction of JAGGED-1 expression within the PTEN-null fibroblasts was sufficient to abrogate the observed increase in colony forming activity implying a direct role for stromal JAGGED-1 in regulation of MaSC properties. Importantly, breast cancer patients whose tumors express both low stromal JAG1 and low stromal PTEN exhibit a shorter time to recurrence than those whose tumors express low levels of either alone suggesting similar stromal signaling in advanced disease. Combined, these results unveil a novel stromal PTEN-to-JAGGED-1 axis in maintaining the MaSC niche, and subsequently inhibiting breast cancer initiation and disease progression.


Frontiers in Oncology | 2014

Protein Kinase C Beta in the Tumor Microenvironment Promotes Mammary Tumorigenesis

Julie A. Wallace; Jason R. Pitarresi; Nandini Sharma; Marilly Palettas; Maria C. Cuitiño; Steven T. Sizemore; Lianbo Yu; Allen Sanderlin; Thomas J. Rosol; Kamal D. Mehta; Gina M. Sizemore; Michael C. Ostrowski

Protein kinase C beta (PKCβ) expression in breast cancer is associated with a more aggressive tumor phenotype, yet the mechanism for how PKCβ is pro-tumorigenic in this disease is still unclear. Interestingly, while it is known that PKCβ mediates angiogenesis, immunity, fibroblast function and adipogenesis, all components of the mammary tumor microenvironment (TME), no study to date has investigated whether stromal PKCβ is functionally relevant in breast cancer. Herein, we evaluate mouse mammary tumor virus–polyoma middle T-antigen (MMTV–PyMT) induced mammary tumorigenesis in the presence and absence of PKCβ. We utilize two model systems: one where PKCβ is deleted in both the epithelial and stromal compartments to test the global requirement for PKCβ on tumor formation, and second, where PKCβ is deleted only in the stromal compartment to test its role in the TME. MMTV–PyMT mice globally lacking PKCβ live longer and develop smaller tumors with decreased proliferation and decreased macrophage infiltration. Similarly, when PKCβ is null exclusively in the stroma, PyMT-driven B6 cells form smaller tumors with diminished collagen deposition. These experiments reveal for the first time a tumor promoting role for stromal PKCβ in MMTV–PyMT tumorigenesis. In corroboration with these results, PKCβ mRNA (Prkcb) is increased in fibroblasts isolated from MMTV–PyMT tumors. These data were confirmed in a breast cancer patient cohort. Combined these data suggest the continued investigation of PKCβ in the mammary TME is necessary to elucidate how to effectively target this signaling pathway in breast cancer.


Breast Cancer Research and Treatment | 2014

Hypomethylation of the MMP7 promoter and increased expression of MMP7 distinguishes the basal-like breast cancer subtype from other triple-negative tumors

Steven T. Sizemore; Gina M. Sizemore; Christine N. Booth; Cheryl L. Thompson; Paula Silverman; Gurkan Bebek; Fadi W. Abdul-Karim; Stefanie Avril; Ruth A. Keri

Identification of novel targets for the treatment of basal-like breast cancer is essential for improved outcomes in patients with this disease. This study investigates the association of MMP7 expression and MMP7 promoter methylation with subtype and outcome in breast cancer patient cohorts. Immunohistochemical analysis was performed on a breast cancer tissue microarray and validated in independent histological samples. MMP7 expression significantly correlated with patient age, tumor size, triple-negative (TN) status, and recurrence. Analysis of publically available datasets confirmed MMP7 gene expression as a prognostic marker of breast cancer metastasis, particularly metastasis to the brain and lungs. Methylation of the MMP7 promoter was assessed by methylation-specific PCR in a panel of breast cancer cell lines and patient tumor samples. Hypomethylation of the MMP7 promoter significantly correlated with TN status in DNA from patient tumor samples, and this association was confirmed using The Cancer Genome Atlas (TCGA) dataset. Evaluation of a panel of breast cancer cell lines and data from the Curtis and TCGA breast carcinoma datasets revealed that elevated MMP7 expression and MMP7 promoter hypomethylation are specific biomarkers of the basal-like molecular subtype which shares considerable, but not complete, overlap with the clinical TN subtype. Importantly, MMP7 expression was identified as an independent predictor of pathological complete response in a large breast cancer patient cohort. Combined, these data suggest that MMP7 expression and MMP7 promoter methylation may be useful as prognostic biomarkers. Furthermore, MMP7 expression and promoter methylation analysis may be effective mechanisms to distinguish basal-like breast cancers from other triple-negative subtypes. Finally, these data implicate MMP7 as a potential therapeutic target for the treatment of basal-like breast cancers.


Biology of Reproduction | 2013

FOXC1 Is Enriched in the Mammary Luminal Progenitor Population, but Is Not Necessary for Mouse Mammary Ductal Morphogenesis

Gina M. Sizemore; Steven T. Sizemore; Bhupinder Pal; Christine N. Booth; Darcie D. Seachrist; Fadi W. Abdul-Karim; Tsutomu Kume; Ruth A. Keri

ABSTRACT Expression of FOXC1, a forkhead box transcription factor, correlates with the human basal-like breast cancer (BLBC) subtype, and functional analyses have revealed its importance for in vitro invasiveness of BLBC cells. Women diagnosed with this breast tumor subtype have a poorer outcome because of the lack of targeted therapies; thus, continued investigation of factors driving these tumors is critical to uncover novel therapeutic targets. Several processes that dictate normal mammary morphogenesis parallel cancer progression, and enforced expression of FOXC1 can induce a progenitor state in more-differentiated mammary epithelial cells. Consequently, evaluating how FOXC1 functions in the normal gland is critical to further understand BLBC biology. Although FOXC1 is well known to control normal development of a number of tissues, its role in the mammary gland has not yet been investigated. Herein, we describe FOXC1 expression patterning in the normal breast, where it is localized to the basal/myoepithelium, suggesting that FOXC1 would be required for normal development. However, mammary glands lacking Foxc1 have no overt defect in ductal outgrowth, alveologenesis, or lineage specification. Of significant interest, we found that expression of FOXC1 is enriched in the normal luminal progenitor population, which is the postulated cell of origin of BLBC. These results indicate that FOXC1 is unnecessary for mammary morphogenesis and that its role in BLBC likely involves processes that are unrelated to cell lineage specification.


Molecular Cancer Research | 2018

Synthetic Lethality of PARP Inhibition and Ionizing Radiation is p53-dependent

Steven T. Sizemore; Rahman Mohammad; Gina M. Sizemore; Somaira Nowsheen; Hao Yu; Michael C. Ostrowski; Arnab Chakravarti; Fen Xia

PARP inhibitors (PARPi) are potentially effective therapeutic agents capable of inducing synthetic lethality in tumors with deficiencies in homologous recombination (HR)-mediated DNA repair such as those carrying BRCA1 mutations. However, BRCA mutations are rare, the majority of tumors are proficient in HR repair, and thus most tumors are resistant to PARPi. Previously, we observed that ionizing radiation (IR) initiates cytoplasmic translocation of BRCA1 leading to suppression of HR-mediated DNA repair and induction of synthetic PARPi lethality in wild-type BRCA1 and HR-proficient tumor cells. The tumor suppressor p53 was identified as a key factor that regulates DNA damage–induced BRCA1 cytoplasmic sequestration following IR. However, the role of p53 in IR-induced PARPi sensitization remains unclear. This study elucidates the role of p53 in IR-induced PARPi cytotoxicity in HR-proficient cancer cells and suggests p53 status may help define a patient population that might benefit from this treatment strategy. Sensitization to PARPi following IR was determined in vitro and in vivo utilizing human breast and glioma tumor cells carrying wild-type BRCA1 and p53, and in associated cells in which p53 function was modified by knockdown or mutation. In breast and glioma cells with proficient HR repair, IR-induced BRCA1 cytoplasmic sequestration, HR repair inhibition, and subsequent PARPi sensitization in vitro and in vivo was dependent upon functional p53. Implications: Implications: p53 status determines PARP inhibitor sensitization by ionizing radiation in multiple BRCA1 and HR-proficient tumor types and may predict which patients are most likely to benefit from combination therapy. Mol Cancer Res; 16(7); 1092–102. ©2018 AACR.


Nature Communications | 2018

Stromal PTEN determines mammary epithelial response to radiotherapy

Gina M. Sizemore; Subhasree Balakrishnan; Katie Thies; Anisha M. Hammer; Steven T. Sizemore; Anthony J. Trimboli; Maria C. Cuitiño; Sarah A. Steck; Gary Tozbikian; Raleigh D. Kladney; Neelam Shinde; Manjusri Das; Dongju Park; Sarmila Majumder; Shiva Krishnan; Lianbo Yu; Soledad Fernandez; Arnab Chakravarti; Peter G. Shields; Lisa D. Yee; Thomas J. Rosol; Thomas Ludwig; Morag Park; Gustavo Leone; Michael C. Ostrowski

The importance of the tumor–associated stroma in cancer progression is clear. However, it remains uncertain whether early events in the stroma are capable of initiating breast tumorigenesis. Here, we show that in the mammary glands of non-tumor bearing mice, stromal-specific phosphatase and tensin homolog (Pten) deletion invokes radiation-induced genomic instability in neighboring epithelium. In these animals, a single dose of whole-body radiation causes focal mammary lobuloalveolar hyperplasia through paracrine epidermal growth factor receptor (EGFR) activation, and EGFR inhibition abrogates these cellular changes. By analyzing human tissue, we discover that stromal PTEN is lost in a subset of normal breast samples obtained from reduction mammoplasty, and is predictive of recurrence in breast cancer patients. Combined, these data indicate that diagnostic or therapeutic chest radiation may predispose patients with decreased stromal PTEN expression to secondary breast cancer, and that prophylactic EGFR inhibition may reduce this risk.The tumor microenvironment influences tumor progression. Here the authors show that lack of stromal PTEN phosphatase induces DNA repair defects in the neighboring mammary gland epithelial cells via hyperactivation of EGF-receptor signaling, resulting in higher radiation-induced DNA damage and hyperplasia.


Life Science Alliance | 2018

Disruption of stromal hedgehog signaling initiates RNF5-mediated proteasomal degradation of PTEN and accelerates pancreatic tumor growth

Jason R. Pitarresi; Xin Liu; Alex Avendano; Katie Thies; Gina M. Sizemore; Anisha M. Hammer; Blake E. Hildreth; David J Wang; Sarah A. Steck; Sydney Donohue; Maria C. Cuitiño; Raleigh D. Kladney; Thomas A. Mace; Jonathan J. Chang; Christina S Ennis; Huiqing Li; Roger H. Reeves; Seth Blackshaw; Jianying Zhang; Lianbo Yu; Soledad Fernandez; Wendy L. Frankel; Mark Bloomston; Thomas J. Rosol; Gregory B. Lesinski; Stephen F. Konieczny; Denis C. Guttridge; Anil K. Rustgi; Gustavo Leone; Jonathan W. Song

Disrupting paracrine Hedgehog signaling in pancreatic cancer stroma through genetic deletion of fibroblast Smoothened leads to proteasomal degradation of fibroblast PTEN and accelerates tumor growth. The contribution of the tumor microenvironment to pancreatic ductal adenocarcinoma (PDAC) development is currently unclear. We therefore examined the consequences of disrupting paracrine Hedgehog (HH) signaling in PDAC stroma. Herein, we show that ablation of the key HH signaling gene Smoothened (Smo) in stromal fibroblasts led to increased proliferation of pancreatic tumor cells. Furthermore, Smo deletion resulted in proteasomal degradation of the tumor suppressor PTEN and activation of oncogenic protein kinase B (AKT) in fibroblasts. An unbiased proteomic screen identified RNF5 as a novel E3 ubiquitin ligase responsible for degradation of phosphatase and tensin homolog (PTEN) in Smo-null fibroblasts. Ring Finger Protein 5 (Rnf5) knockdown or pharmacological inhibition of glycogen synthase kinase 3β (GSKβ), the kinase that marks PTEN for ubiquitination, rescued PTEN levels and reversed the oncogenic phenotype, identifying a new node of PTEN regulation. In PDAC patients, low stromal PTEN correlated with reduced overall survival. Mechanistically, PTEN loss decreased hydraulic permeability of the extracellular matrix, which was reversed by hyaluronidase treatment. These results define non-cell autonomous tumor-promoting mechanisms activated by disruption of the HH/PTEN axis and identifies new targets for restoring stromal tumor-suppressive functions.

Collaboration


Dive into the Gina M. Sizemore's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lianbo Yu

Ohio State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge