Giordano Serafini
University of Urbino
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Giordano Serafini.
Molecular and Cellular Biochemistry | 2000
Mara Fiorani; Roberta De Sanctis; Francesca Scarlatti; Luciana Vallorani; Roberta De Bellis; Giordano Serafini; Marzia Bianchi; Vilberto Stocchi
The oxidized form of vitamin C (dehydroascorbic acid, DHA) completely and irreversibly inactivates recombinant human hexokinase type I, in a pseudo-first order fashion. The inactivation reaction occurs without saturation, indicating that DHA does not form a reversible complex with hexokinase. Further characterization of this response revealed that the inactivation does not require oxygen and that dithiothreitol, while able to prevent the DHA-mediated loss of enzyme activity, failed to restore the activity of the DHA-inhibited enzyme. Inactivation was not associated with cleavage of the peptide chain or cross-linking. The decay in enzymatic activity was however both dependent on deprotonation of a residue with an alkaline pKa and associated with covalent binding of DHA to the protein. In addition, inactivation of hexokinase decreased or increased, respectively, in the presence of the substrates glucose or MgATP. Finally, amino acid analysis of the DHA-modified hexokinase revealed a decrease of cysteine residues.Taken together, the above results are consistent with the possibility that covalent binding of the reagent with a thiol group of cysteine is a critical event for the DHA-mediated loss of hexokinase activity.
Structure | 1999
Camillo Rosano; Elisabetta Sabini; Menico Rizzi; Daniela Deriu; Garib N. Murshudov; Marzia Bianchi; Giordano Serafini; Mauro Magnani; Martino Bolognesi
BACKGROUND Hexokinase I sets the pace of glycolysis in the brain, catalyzing the ATP-dependent phosphorylation of glucose. The catalytic properties of hexokinase I are dependent on product inhibition as well as on the action of phosphate. In vivo, a large fraction of hexokinase I is bound to the mitochondrial outer membrane, where the enzyme adopts a tetrameric assembly. The mitochondrion-bound hexokinase I is believed to optimize the ATP/ADP exchange between glucose phosphorylation and the mitochondrial oxidative phosphorylation reactions. RESULTS The crystal structure of human hexokinase I has been determined at 2.25 A resolution. The overall structure of the enzyme is in keeping with the closed conformation previously observed in yeast hexokinase. One molecule of the ATP analogue AMP-PNP is bound to each N-terminal domain of the dimeric enzyme in a surface cleft, showing specific interactions with the nucleotide, and localized positive electrostatic potential. The molecular symmetry brings the two bound AMP-PNP molecules, at the centre of two extended surface regions, to a common side of the dimeric hexokinase I molecule. CONCLUSIONS The binding of AMP-PNP to a protein site separated from the catalytic centre of human hexokinase I can be related to the role played by some nucleotides in dissociating the enzyme from the mitochondrial membrane, and helps in defining the molecular regions of hexokinase I that are expected to be in contact with the mitochondrion. The structural information presented here is in keeping with monoclonal antibody mapping of the free and mitochondrion-bound forms of the enzyme, and with sequence analysis of hexokinases that differ in their mitochondria binding properties.
Vaccine | 2003
Sabrina Dominici; Maria Elena Laguardia; Giordano Serafini; Laura Chiarantini; Cinzia Fortini; Antonella Tripiciano; Egidio Brocca-Cofano; Arianna Scoglio; Antonella Caputo; Valeria Fiorelli; Riccardo Gavioli; Aurelio Cafaro; Barbara Ensoli; Mauro Magnani
The immunotherapeutic potential of biologically active HIV-1 Tat protein coupled to autologous red blood cells (RBCs) was evaluated in a mouse model. HIV-1 Tat expressed in Escherichia coli and purified to homogeneity was found to be active in viral trans activation and efficiently internalised by monocyte-derived dendritic cells (MDDCs). The product of HIV-Tat biotinylation and coupling to RBCs by means of a biotin-avidin-biotin bridge, (RBC-Tat), showed no trans activation activity and was still efficiently internalized by MDDCs as compared to uncoupled Tat.Balb/c mice were then immunized with 10 microg of soluble Tat in complete Freunds adjuvant or with 40 ng of Tat coupled on RBCs surface and boosted at week 3, 6 and 25 with 5 microg soluble Tat in incomplete Freunds adjuvant or with 20 ng of RBC-coupled Tat, respectively. Anti-Tat antibody response was similar in both groups; however, 2/6 animals immunized with soluble Tat and 6/6 animals immunized with RBC-Tat developed anti-Tat neutralizing antibodies. In addition, at week 28 cytolytic anti-Tat CTLs were detected in all animals although they were slightly higher in mice immunized with RBC-Tat. These results indicate that RBC-mediated delivery of HIV-1 Tat, in amounts 250 times lower than soluble Tat, is safe and induces specific CTL responses and neutralizing antibodies.
Archives of Biochemistry and Biophysics | 1988
Mauro Magnani; Vilberto Stocchi; Giordano Serafini; Laura Chiarantini; Giorgio Fornaini
In human placenta 85% of total hexokinase activity (EC 2.7.1.1) was found in a soluble form. Of this, 70% is hexokinase type I while the remaining 30% is hexokinase type II. All the bound hexokinase is type I. Soluble hexokinase I was purified 11,000-fold by a combination of ion-exchange chromatography, affinity chromatography, and dye-ligand chromatography. The specific activity was 190 units/mg protein with a 75% yield. The enzyme shows only one band in nondenaturing polyacrylamide gel electrophoresis that stains for protein and enzymatic activity; however, two components (with Mr 112,000 and 103,000) were constantly seen in sodium dodecyl sulfate-gel electrophoresis. Many attempts were made to separate these two proteins under native conditions; however, only one peak of activity was obtained when the enzyme was submitted to gel filtration (Mr 118,000), preparative isoelectric focusing (pI 5.9), anion-exchange chromatography, hydroxylapatite chromatography, and affinity chromatography on immobilized dyes and immobilized glucosamine. The high and low molecular weight hexokinases show the same isoelectric point under denaturing conditions as determined by two-dimensional gel electrophoresis. Each hexokinase subtype was obtained by preparative sodium dodecyl sulfate electrophoresis followed by electroelution. Monospecific antibodies raised in rabbits against electroeluted high and low molecular weight hexokinases were not able to recognize the native enzymes but each of them detected both hexokinases on immunoblots. Amino acid compositions and peptide mapping by limited proteolysis of the high and low molecular weight hexokinases were also performed and suggested a strong homology between these two subtypes of human hexokinase I.
British Journal of Haematology | 1999
Antonella Antonelli; Rita Crinelli; Marzia Bianchi; Aurora Cerasi; Lucia Gentilini; Giordano Serafini; Mauro Magnani
K48R ubiquitin (K48R‐Ub) is an analogue of native ubiquitin that does not form polyubiquitin chain conjugates. Targeted delivery of this recombinant mutant ubiquitin to human macrophages results in an intracellular increase in the ubiquitin analogue. IkBα polyubiquitination and degradation were significantly inhibited in K48R‐Ub targeted macrophages upon stimulation with lipopolysaccharide. The ability to reduce IkBα degradation was also associated with a reduced production of TNF‐α, the gene of which is under NF‐kB control. At a concentration of 0.1 μM, dexamethasone was less effective than K48R‐Ub in preventing IkBα depletion and TNF‐α release. These data suggest that ubiquitin analogues are potent suppressors of TNF‐α release in macrophages.
Biochimica et Biophysica Acta | 1994
Mauro Magnani; Rita Crinelli; Antonella Antonelli; Anna Casabianca; Giordano Serafini
Intracellular protein degradation is highly selective, however, the mechanism(s) underlying this selectivity are not fully understood. We have previously shown that purified rabbit hexokinase type I, an enzyme present in mammalian brain both in soluble and mitochondrial bound form, is conjugate to ubiquitin and then degraded by a rabbit reticulocyte fraction II. In the present study we report that the mitochondrial bound hexokinase is stable for several hours in the same proteolytic system both in the presence or absence of ATP. E1, E2 and E3, the enzymes of the ubiquitin conjugating system, are able to incorporate 125I- or biotin-labelled ubiquitin in an ATP-dependent manner in soluble hexokinase as well as in a number of mitochondrial proteins. Furthermore, the mitochondria by themselves have a pronounced ATP-dependent ability to conjugate 125I-ubiquitin. However, Western blotting experiments, using a specific antibody against hexokinase, or against ubiquitin, showed that the mitochondrial bound enzyme is neither ubiquitinated nor degraded. This result has been confirmed by purification of bound hexokinase from the brain mitochondrial fraction or following the incubation of intact mitochondria with ATP, 125I-ubiquitin and E1, E2 and E3. Thus, mitochondrial bound hexokinase is not recognized by the ubiquitin conjugating system while the soluble enzyme is conjugate to ubiquitin and then degraded. Furthermore, the soluble hexokinase from rabbit brain was isolated by immunoaffinity chromatography and shown to be recognized by an anti-ubiquitin antibody. These results suggest that the intracellular distribution of protein is an important feature of a protein which determines its susceptibility to ubiquitin-dependent degradation.
Journal of Controlled Release | 2011
Sara Biagiotti; Luigia Rossi; Marzia Bianchi; Elisa Giacomini; Francesca Pierigè; Giordano Serafini; Pier Giulio Conaldi; Mauro Magnani
Cyclosporine A (CsA) and tacrolimus (also known as FK506) are natural compounds with immunosuppressive activity that have improved the outcome of organ transplantation. Unfortunately, both drugs are characterised by high pharmacokinetic variability, poor bioavailability and high toxicity. Until now, no optimal method to deliver immunosuppressant drugs into circulation has been developed. Here we propose the use of engineered erythrocytes as a drug delivery system for the release of immunosuppressants in circulation in order to modify their pharmacokinetic and restrain toxic effects. After administration, FK506 and CsA mainly distribute within erythrocytes owing to the presence into these cells of immunophilins that bind the drugs with very high affinity (FKBP12 for FK506 and cyclophilin A for CsA); therefore, a new strategy aimed to increase the amount of FK506/CsA carried by erythrocytes by increasing the intra-erythrocytic concentration of the respective binding proteins has been developed. We manufactured recombinant forms of human FKBP12 and cyclophilin A to be loaded into RBC through a hypotonic dialysis and isotonic resealing procedure. Erythrocytes loaded with 3.5±1.3, 7.5±3.1 and 15.5±0.4nmol FKBP12 were able to bind 3.5±1.5, 6.0±1.9 and 11.4±2.9μg FK506 per millilitre RBC, respectively, while RBC loaded with 4.0±0.6, 5.0±0.8 and 15.9±2.4nmol of cyclophilin A could bind 8.9±3.4, 12.2±3.5 and 17.0±3.2μg CsA. Thus, both engineered RBC were demonstrated able to bind up to an order of magnitude more drug than corresponding native erythrocytes (1.0±0.3μg FK506 and 3.2±0.3μg CsA). Moreover, FK506 released from FKBP12-RBC is able to be up-taken by T lymphocytes and inhibit IL-2 expression in vitro as free administered drug. In summary, our results indicate that diffusible immunosuppressants could be entrapped into red cells (thanks to the loading of the respective target protein) and suggest that immunophilin-loaded RBC could be employed as potential delivery system for immunosuppressive agents.
Archives of Biochemistry and Biophysics | 1982
Mauro Magnani; Giordano Serafini; Vilberto Stocchi; Mario Bossù; Marina Dachà
Abstract More than 90% of the total hexokinase activity in rabbit brain was found to be associated with the mitochondrial fraction. The participate enzyme was solubilized in a relatively specific way by glucose 6-phosphate and Triton X-100 and purified to apparent homogeneity by ammonium sulfate fractionation, DEAE-cellulose column chromatography, and affinity chromatography. The solubilized hexokinase activity has been purified 700-fold in 48% yield with a specific activity of 165 units/mg of protein. The molecular weight was found to be approximately 100,000 both for the native and the denatured enzyme. The isoelectric point, pI, was 6.3 pH units by isoelectric focusing and the enzyme was found to be able to phosphorylate several hexoses with different affinities. Mg · ATP, among the nucleotide substrates, was the most effective as a phosphate donor. The present results indicate considerable similarity between this enzyme and the other mammalian type I hexokinases.
Vaccine | 2013
Francesca Andreoni; Romina Boiani; Giordano Serafini; Giulia Amagliani; Sabrina Dominici; Giulia Riccioni; Renata Zaccone; Monique Mancuso; Giuseppe Scapigliati; Mauro Magnani
Photobacterium damselae subsp. piscicida (PDP) is the causative agent of fish pasteurellosis, a bacterial disease causing important losses in marine aquaculture. Vaccines against the pathogen can be a way to control the infection and avoid antibiotic treatments. However, a satisfactory protective vaccine against fish pasteurellosis is not commercially available. In this study, a biotechnogical approach based on reverse vaccinology has been used to identify potential vaccine candidates for the development of a recombinant subunit vaccine. Genome sequencing of clones from a genomic cosmid library of PDP and in silico selection of the surface exposed proteins were the initial steps in vaccine candidate identification. From 370 open reading frames (ORF) eight potential antigens were selected, expressed as recombinant proteins and purified. These vaccine candidates were used to generate specific polyclonal antibodies in mice. Each antibody was then screened in vitro by inhibition adherence assay of live PDP on chinook salmon embryo cells (CHSE-214). A lipoprotein, found to be involved in the adherence of the bacterium to epithelial cells and annotated as PDP_0080, was then selected. The recombinant protein was further investigated in fish vaccination and challenge experiments to assess its ability to protect sea bass, Dicentrarchus labrax, against PDP infection. Immunisation with PDP_0080 recombinant protein elicited high specific antibody titres. Furthermore, the survival rate of fish immunized with the 25 μg dose of protein was significantly higher compared to the control group. The results of the study suggest that the PDP_0080 protein could be a promising candidate for the design of a recombinant vaccine against pasteurellosis.
Protein Expression and Purification | 2014
Diego Moricoli; Maria Elena Laguardia; Damiano Cosimo Carbonella; Maria Cristina Balducci; Sabrina Dominici; Valentina Fiori; Giordano Serafini; Michela Flego; Maurizio Cianfriglia; Mauro Magnani
The CEACAM1 cell adhesion molecule has recently received considerable interest as a tumour target antigen since its re-expression often occurs in the advanced stages of multiple malignancies including malignant melanoma, non-small cell lung cancer and other types of solid tumors. In this study, we describe the expression-purification and characterization of the new single chain variable fragment (scFv) antibody named DIATHIS1, that recognizes the N-terminal IgV-like domain present in CEACAM1. Three validation batches show that the production process is robust and reproducible. The scFv DIATHIS1 is formulated as a naturally occurring mixture of monomer and dimer. The antibody is biophysically stable at low temperature (-80°C), different concentrations and remains biologically active for at least 24months. The thermal stability of scFv DIATHIS1 at 37°C shows important features for its activity in vivo. The dimer behaves as a reservoir converting slowly into monomer. The monomer and dimer forms of scFv DIATHIS1 were isolated and characterized, showing high reactivity for CEACAM1. This new composition of antibody could have advantageous pharmacokinetics parameters over conventional scFv for in vivo applications.