Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giorgia Mandili is active.

Publication


Featured researches published by Giorgia Mandili.


PLOS ONE | 2011

Differentiation of Mesenchymal Stem Cells Derived from Pancreatic Islets and Bone Marrow into Islet-Like Cell Phenotype

Cristina Zanini; Stefania Bruno; Giorgia Mandili; Denisa Baci; Francesco Cerutti; Giovanna Cenacchi; Leo Izzi; Giovanni Camussi; Marco Forni

Background Regarding regenerative medicine for diabetes, accessible sources of Mesenchymal Stem Cells (MSCs) for induction of insular beta cell differentiation may be as important as mastering the differentiation process itself. Methodology/Principal Findings In the present work, stem cells from pancreatic islets (human islet-mesenchymal stem cells, HI-MSCs) and from human bone marrow (bone marrow mesenchymal stem cells, BM-MSCs) were cultured in custom-made serum-free medium, using suitable conditions in order to induce differentiation into Islet-like Cells (ILCs). HI-MSCs and BM-MSCs were positive for the MSC markers CD105, CD73, CD90, CD29. Following this induction, HI-MSC and BM-MSC formed evident islet-like structures in the culture flasks. To investigate functional modifications after induction to ILCs, ultrastructural analysis and immunofluorescence were performed. PDX1 (pancreatic duodenal homeobox gene-1), insulin, C peptide and Glut-2 were detected in HI-ILCs whereas BM-ILCs only expressed Glut-2 and insulin. Insulin was also detected in the culture medium following glucose stimulation, confirming an initial differentiation that resulted in glucose-sensitive endocrine secretion. In order to identify proteins that were modified following differentiation from basal MSC (HI-MSCs and BM-MSCs) to their HI-ILCs and BM-ILCs counterparts, proteomic analysis was performed. Three new proteins (APOA1, ATL2 and SODM) were present in both ILC types, while other detected proteins were verified to be unique to the single individual differentiated cells lines. Hierarchical analysis underscored the limited similarities between HI-MSCs and BM-MSCs after induction of differentiation, and the persistence of relevant differences related to cells of different origin. Conclusions/Significance Proteomic analysis highlighted differences in the MSCs according to site of origin, reflecting spontaneous differentiation and commitment. A more detailed understanding of protein assets may provide insights required to master the differentiation process of HI-MSCs to functional beta cells based only upon culture conditioning. These findings may open new strategies for the clinical use of BM-MSCs in diabetes.


Journal of Neurochemistry | 2007

Inhibition of heat shock proteins (HSP) expression by quercetin and differential doxorubicin sensitization in neuroblastoma and Ewing's sarcoma cell lines

Cristina Zanini; Giuliana Giribaldi; Giorgia Mandili; Franco Carta; Nicoletta Crescenzio; Brigitte Bisaro; Alessandra Doria; Luiselda Foglia; Luca Cordero di Montezemolo; Fabio Timeus; Franco Turrini

Neuroblastoma (NB) and Ewing’s sarcoma (ES) represent the most common extracranial solid tumors of childhood. Heat shock proteins (HSP) are elevated in cancer cells and their over‐expression was correlated to drug‐resistance. In this work we identified the HSP by a sensitive proteomic analysis of NB and ES cell lines, then, we studied the HSP response to doxorubicin. Some identified HSP were constitutively more expressed in NB than in ES cells. Doxorubicin‐stimulated HSP response only in NB cells. Quercetin was found to inhibit HSP expression depleting heat shock factor 1 (HSF1) cellular stores. Quercetin caused a higher anti‐proliferative effect in NB (IC50: 6.9 ± 5.8 μmol/L) than in ES cells (IC50: 85.5 ± 53.1 μmol/L). Moreover, quercetin caused a very pronounced doxorubicin sensitizing effect in NB cells (241 fold IC50 decrease) and a moderate effect in ES cells. HSP involvement in NB cells sensitization was confirmed by the silencing of HSF1. Quercetin treatment and HSF1 silencing increased the pro‐apoptotic effect of doxorubicin. In conclusion, the higher HSP levels, observed in NB cells, did not confer increased resistance to doxorubicin; on the contrary, HSP inhibition by quercetin or gene silencing caused higher sensitization to doxorubicin. These results may have a potential application in the treatment of NB.


PLOS ONE | 2013

Medullospheres from DAOY, UW228 and ONS-76 cells: increased stem cell population and proteomic modifications.

Cristina Zanini; Elisabetta Ercole; Giorgia Mandili; Roberta Salaroli; Alice Poli; Cristiano Renna; Valentina Papa; Giovanna Cenacchi; Marco Forni

Background Medulloblastoma (MB) is an aggressive pediatric tumor of the Central Nervous System (CNS) usually treated according to a refined risk stratification. The study of cancer stem cells (CSC) in MB is a promising approach aimed at finding new treatment strategies. Methodology/Principal Findings The CSC compartment was studied in three characterized MB cell lines (DAOY, UW228 and ONS-76) grown in standard adhesion as well as being grown as spheres, which enables expansion of the CSC population. MB cell lines, grown in adherence and as spheres, were subjected to morphologic analysis at the light and electron microscopic level, as well as cytofluorimetric determinations. Medullospheres (MBS) were shown to express increasingly immature features, along with the stem cells markers: CD133, Nestin and β-catenin. Proteomic analysis highlighted the differences between MB cell lines, demonstrating a unique protein profile for each cell line, and minor differences when grown as spheres. In MBS, MALDI-TOF also identified some proteins, that have been linked to tumor progression and resistance, such as Nucleophosmin (NPM). In addition, immunocytochemistry detected Sox-2 as a stemness marker of MBS, as well as confirming high NPM expression. Conclusions/Significance Culture conditioning based on low attachment flasks and specialized medium may provide new data on the staminal compartment of CNS tumors, although a proteomic profile of CSC is still elusive for MB.


Virchows Archiv | 2008

Proteomic identification of heat shock protein 27 as a differentiation and prognostic marker in neuroblastoma but not in Ewing’s sarcoma

Cristina Zanini; Francesco Pulerà; Franco Carta; Giuliana Giribaldi; Giorgia Mandili; Milena Maule; Marco Forni; Franco Turrini

Neuroblastoma (NB) and Ewing’s sarcoma (ES) cell lines were analysed by two-dimensional gel electrophoresis (2-DE) searching for new diagnostic/prognostic markers. Protein expression profiles displayed a high degree of similarity with the exception of marked heat shock protein (HSP) 27 and less marked HSP60 and HSP70 family up-modulations in NB cells. HSP27, which showed peculiar variability in different NB cell preparations, responded to all trans-retinoic acid treatment in NB cells but not in ES cells at gene and protein expression levels. Immunohistochemistry studies showed different behaviours of HSP27 and HSP70 expression in NB and ES biopsies. HSP27 was less expressed, whereas HSP70 was more expressed in the immature areas of NB. HSP27 expression showed positive and statistically significant correlation with favourable prognosis, and HSP27 expression also negatively correlated with increasing aggressiveness of histological type. In ES, both chaperones were expressed without characteristic patterns. Our results suggest that HSP27, after further clinical validations, could be used as a marker of neuronal differentiation in vivo for the assessment of the biological behaviour of NB and for the risk stratification of patients.


Journal of Hematology & Oncology | 2013

Autoantibodies to Ezrin are an early sign of pancreatic cancer in humans and in genetically engineered mouse models

Michela Capello; Paola Cappello; Federica Linty; Roberto Chiarle; Isabella Sperduti; Anna Novarino; Paola Salacone; Giorgia Mandili; Alessio Naccarati; Carlotta Sacerdote; Stefania Beghelli; Samantha Bersani; Stefano Barbi; Claudio Bassi; Aldo Scarpa; Paola Nisticò; Mirella Giovarelli; Paolo Vineis; Michele Milella; Francesco Novelli

BackgroundPancreatic Ductal Adenocarcinoma (PDAC) is a highly aggressive malignancy with only a 5% 5-year survival rate. Reliable biomarkers for early detection are still lacking. The goals of this study were (a) to identify early humoral responses in genetically engineered mice (GEM) spontaneously developing PDAC; and (b) to test their diagnostic/predictive value in newly diagnosed PDAC patients and in prediagnostic sera.Methods and resultsThe serum reactivity of GEM from inception to invasive cancer, and in resectable or advanced human PDAC was tested by two-dimensional electrophoresis Western blot against proteins from murine and human PDAC cell lines, respectively. A common mouse-to-human autoantibody signature, directed against six antigens identified by MALDI-TOF mass spectrometry, was determined. Of the six antigens, Ezrin displayed the highest frequency of autoantibodies in GEM with early disease and in PDAC patients with resectable disease. The diagnostic value of Ezrin-autoantibodies to discriminate PDAC from controls was further shown by ELISA and ROC analyses (P < 0.0001). This observation was confirmed in prediagnostic sera from the EPIC prospective study in patients who eventually developed PDAC (with a mean time lag of 61.2 months between blood drawing and PDAC diagnosis). A combination of Ezrin-autoantibodies with CA19.9 serum levels and phosphorylated α-Enolase autoantibodies showed an overall diagnostic accuracy of 0.96 ± 0.02.ConclusionsAutoantibodies against Ezrin are induced early in PDAC and their combination with other serological markers may provide a predictive and diagnostic signature.


Frontiers in Physiology | 2016

Cancer and Chemotherapy Contribute to Muscle Loss by Activating Common Signaling Pathways

Rafael Barreto; Giorgia Mandili; Frank A. Witzmann; Francesco Novelli; Teresa A. Zimmers; Andrea Bonetto

Cachexia represents one of the primary complications of colorectal cancer due to its effects on depletion of muscle and fat. Evidence suggests that chemotherapeutic regimens, such as Folfiri, contribute to cachexia-related symptoms. The purpose of the present study was to investigate the cachexia signature in different conditions associated with severe muscle wasting, namely Colon-26 (C26) and Folfiri-associated cachexia. Using a quantitative LC-MS/MS approach, we identified significant changes in 386 proteins in the quadriceps muscle of Folfiri-treated mice, and 269 proteins differentially expressed in the C26 hosts (p < 0.05; −1.5 ≥ fold change ≥ +1.5). Comparative analysis isolated 240 proteins that were modulated in common, with a large majority (218) that were down-regulated in both experimental settings. Interestingly, metabolic (47.08%) and structural (21.25%) proteins were the most represented. Pathway analysis revealed mitochondrial dysfunctions in both experimental conditions, also consistent with reduced expression of mediators of mitochondrial fusion (OPA-1, mitofusin-2), fission (DRP-1) and biogenesis (Cytochrome C, PGC-1α). Alterations of oxidative phosphorylation within the TCA cycle, fatty acid metabolism, and Ca2+ signaling were also detected. Overall, the proteomic signature in the presence of both chemotherapy and cancer suggests the activation of mechanisms associated with movement disorders, necrosis, muscle cell death, muscle weakness and muscle damage. Conversely, this is consistent with the inhibition of pathways that regulate nucleotide and fatty acid metabolism, synthesis of ATP, muscle and heart function, as well as ROS scavenging. Interestingly, strong up-regulation of pro-inflammatory acute-phase proteins and a more coordinated modulation of mitochondrial and lipidic metabolisms were observed in the muscle of the C26 hosts that were different from the Folfiri-treated animals. In conclusion, our results suggest that both cancer and chemotherapy contribute to muscle loss by activating common signaling pathways. These data support the undertaking of combination strategies that aim to both counteract tumor growth and reduce chemotherapy side effects.


Journal of Proteomics | 2013

Proteomic identification of Reticulocalbin 1 as potential tumor marker in renal cell carcinoma.

Giuliana Giribaldi; G. Barbero; Giorgia Mandili; Lorenzo Daniele; Amina Khadjavi; Agata Notarpietro; Daniela Ulliers; Mauro Prato; Valerio Giacomo Minero; Antonino Battaglia; Marco Allasia; A. Bosio; Anna Sapino; Paolo Gontero; Bruno Frea; Dario Fontana; P. Destefanis

UNLABELLED Renal cell carcinoma (RCC) biomarkers are necessary for diagnosis and prognosis. They serve to monitor therapy response and follow-up, as drug targets, and therapy predictors in personalized treatments. Proteomics is a suitable method for biomarker discovery. Here we investigate differential protein expression in RCC, and we evaluate Reticulocalbin 1 (RCN1) use as a new potential marker. Neoplastic and healthy tissue samples were collected from 24 RCC patients during radical nephrectomy. Seven specimens were firstly processed by proteomic analysis (2-DE and MALDI-TOF) and 18 differentially expressed proteins from neoplastic and healthy renal tissues were identified. Among them, RCN1 was over-expressed in all cancer specimens analyzed by proteomics. Consequently RCN1 use as a potential marker was further evaluated in all 24 donors. RCN1 expression was verified by Western blotting (WB) and immunohistochemistry (IHC). WB analysis confirmed RCN1 over-expression in 21 out of 24 tumor specimens, whereas IHC displayed focal or diffuse expression of RCN1 in all 24 RCC tissues. Thus RCN1 appears as a potential marker for clinical approaches. A larger histopathological trial will clarify the prognostic value of RCN1 in RCC. BIOLOGICAL SIGNIFICANCE The present work aimed at finding new biomarkers for RCC - a life-threatening disease characterized by high incidence in Western countries - by performing differential proteomic analysis of neoplastic and normal renal tissues obtained from a small cohort of RCC patients. Some of the identified proteins have been previously associated to renal cancer however data confirming the possible use of these proteins in clinical practice are not available to date. By IHC we demonstrated that RCN1 could be easily employed in clinical practice, confirming RCN1 over-expression in RCC tissues of all examined patients, and weak protein expression in healthy renal tissues only in correspondence to the renal tubule section. These data indicate a promising role of RCN1 as a possible marker in RCC and indicate the proximal convoluted renal tubule as a putative origin point for RCC. Since IHC staining displayed different grades of intensity in tested tissues, we hypothesized that RCN1 could also be employed as a prognostic marker or as a response predictor for RCC-targeted therapy. To test such a hypothesis, a larger retrospective trial on paraffin-embedded tissues obtained from radical or partial nephrectomy of RCC patients is planned to be performed by our group.


Journal of Hepatology | 2015

Mouse hepatocytes and LSEC proteome reveal novel mechanisms of ischemia/reperfusion damage and protection by A2aR stimulation

Giorgia Mandili; E. Alchera; Simone Merlin; C. Imarisio; Bangalore R. Chandrashekar; Chiara Riganti; Alberto Bianchi; Francesco Novelli; A. Follenzi; R. Carini

BACKGROUND & AIMS Ischemia-reperfusion (IR) of liver results in hepatocytes (HP) and sinusoidal endothelial cells (LSEC) irreversible damage. Ischemic preconditioning protects IR damage upon adenosine A2a receptor (A2aR) stimulation. Understanding the phenotypic changes that underlie hepatocellular damage and protection is critical to optimize strategies against IR. METHODS The proteome of HP and LSEC, isolated from sham or IR exposed mice, receiving or not the A2aR agonist CGS21680 (0.5mg/kg b.w.), was analyzed by 2-D DIGE/MALDI-TOF. RESULTS We identified 64 proteins involved in cytoprotection, regeneration, energy metabolism and response to oxidative stress; among them, 34 were associated with IR injury and A2aR protection. The main pathways, downregulated by IR and upregulated by CGS21680 in HP and LSEC, were related to carbohydrate, protein and lipid supply and metabolism. In LSEC, IR reduced stress response enzymes that were instead upregulated by CGS21680 treatment. Functional validation experiments confirmed the metabolic involvement and showed that inhibition of pyruvate kinase, 3-chetoacylCoA thiolase, and arginase reduced the protection by CGS21680 of in vitro hypoxia-reoxygenation injury, whereas their metabolic products induced liver cell protection. Moreover, LSEC, but not HP, were sensitive to H2O2-induced oxidative damage and CGS21680 protected against this effect. CONCLUSIONS IR and A2aR stimulation produces pathological and protected liver cell phenotypes, respectively characterized by down- and upregulation of proteins involved in the response to O2 and nutrients deprivation during ischemia, oxidative stress, and reactivation of aerobic energy synthesis at reperfusion. This provides novel insights into IR hepatocellular damage and protection, and suggests additional therapeutic options.


Asian Pacific Journal of Tropical Medicine | 2010

Malarial pigment enhances heat shock protein-27 in THP-1 cells: New perspectives for in vitro studies on monocyte apoptosis prevention

Mauro Prato; Valentina Gallo; Elena Valente; Amina Khadjavi; Giorgia Mandili; Giuliana Giribaldi

Abstract Objective To investigate the effect of malarial pigment (hemozoin, HZ) on expression of heat shock proteins (HSPs) and cell viability in human monocytes by using a stable cell line (THP-1 cells). Methods THP-1 cells were fed with native HZ or treated with pro-apoptotic molecule gliotoxin for 9 h. Thereafter, the protein expression of HSP-27 and HSP-70 was evaluated by western blotting. Alternatively, HZ-fed cells were cultured up to 72 h and cell viability parameters (survival, apoptosis and necrosis rates) were measured by flow cytometric analysis. Results HZ increased basal protein levels of HSP-27 without altering those of HSP-70 in THP-1 cells, and promoted long-term cell survival without inducing apoptosis. As expected, gliotoxin inhibited HSP-27 protein expression and promoted long-term cell apoptosis. Conclusions Present data show that HZ prevents cell apoptosis and enhances the expression of anti-apoptotic HSP-27 in THP-1 cells, confirming the previous evidences obtained from HZ-fed immunopurified monocytes. Since the use of a stable cell line is pivotal to perform HSP-27 silencing experiments, monocytic THP-1 cells could be a good candidate line for such an approach, which is heavily required to clarify the role of HSP-27 in survival of impaired HZ-fed monocytes during falciparum malaria.


FEBS Journal | 2012

Characterization of the protein ubiquitination response induced by Doxorubicin.

Giorgia Mandili; Amina Khadjavi; Valentina Gallo; Valerio Giacomo Minero; Luca Bessone; Francesco Carta; Giuliana Giribaldi; Francesco Michelangelo Turrini

Doxorubicin is commonly considered to exert its anti‐tumor activity by triggering apoptosis of cancer cells through DNA damage. Recent reports have shown that Doxorubicin elicits a marked heat shock response, and that either inhibition or silencing of heat shock proteins enhance the Doxorubicin apoptotic effect in neuroblastoma cells. In order to investigate whether Doxorubicin may also act through protein modification, we performed a proteomic analysis of ubiquitinated proteins. Here we show that nanomolar Doxorubicin treatment of neuroblastoma cells caused: (a) dose‐dependent over‐ubiquitination of a specific set of proteins in the absence of measurable inhibition of proteasome, (b) protein ubiquination patterns similar to those with Bortezomib, a proteasome inhibitor, (c) depletion and loss of activity of ubiquitinated enzymes such as lactate dehydrogenase and α‐enolase, and (d) a decrease in HSP27 solubility, probably a consequence of its binding to denatured proteins. These data strongly reinforce the hypothesis that Doxorubicin may also exert its effect by damaging proteins.

Collaboration


Dive into the Giorgia Mandili's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge