Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amina Khadjavi is active.

Publication


Featured researches published by Amina Khadjavi.


PLOS ONE | 2011

Irreversible AE1 Tyrosine Phosphorylation Leads to Membrane Vesiculation in G6PD Deficient Red Cells

Antonella Pantaleo; Emanuela Ferru; Franco Carta; Franca Mannu; Luigi Simula; Amina Khadjavi; Proto Pippia; Francesco Michelangelo Turrini

Background While G6PD deficiency is one of the major causes of acute hemolytic anemia, the membrane changes leading to red cell lysis have not been extensively studied. New findings concerning the mechanisms of G6PD deficient red cell destruction may facilitate our understanding of the large individual variations in susceptibility to pro-oxidant compounds and aid the prediction of the hemolytic activity of new drugs. Methodology/Principal Findings Our results show that treatment of G6PD deficient red cells with diamide (0.25 mM) or divicine (0.5 mM) causes: (1) an increase in the oxidation and tyrosine phosphorylation of AE1; (2) progressive recruitment of phosphorylated AE1 in large membrane complexes which also contain hemichromes; (3) parallel red cell lysis and a massive release of vesicles containing hemichromes. We have observed that inhibition of AE1 phosphorylation by Syk kinase inhibitors prevented its clustering and the membrane vesiculation while increases in AE1 phosphorylation by tyrosine phosphatase inhibitors increased both red cell lysis and vesiculation rates. In control RBCs we observed only transient AE1 phosphorylation. Conclusions/Significance Collectively, our findings indicate that persistent tyrosine phosphorylation produces extensive membrane destabilization leading to the loss of vesicles which contain hemichromes. The proposed mechanism of hemolysis may be applied to other hemolytic diseases characterized by the accumulation of hemoglobin denaturation products.


Haematologica | 2014

Thalassemic erythrocytes release microparticles loaded with hemichromes by redox activation of p72Syk kinase

Emanuela Ferru; Antonella Pantaleo; Franco Carta; Franca Mannu; Amina Khadjavi; Valentina Gallo; Luisa Ronzoni; Giovanna Graziadei; Maria Domenica Cappellini; Francesco Michelangelo Turrini

High counts of circulating microparticles, originated from the membrane of abnormal erythrocytes, have been associated with increased thrombotic risk in hemolytic disorders. Our studies indicate that in thalassemia intermedia patients the number of circulating microparticles correlates with the capability of the thalassemic erythrocytes to release microparticles. The microparticles are characteristically loaded with hemichromes formed by denatured α-chains. This finding was substantiated by the positive correlation observed in thalassemia intermedia patients between the amount of hemichromes measured in erythrocytes, their capability to release microparticles and the levels of plasma hemichromes. We observed that hemichromes, following their binding to the cytoplasmic domain of band 3, induce the formation of disulfide band 3 dimers that are subsequently phosphorylated by p72Syk kinase. Phosphorylation of oxidized band 3 appears to be relevant for the formation of large hemichromes/band 3 clusters that, in turn, induce local membrane instability and the release of microparticles. Proteomic analysis of microparticles released from thalassemia intermedia erythrocytes indicated that, besides hemichromes and clustered band 3, the microparticles contain a characteristic set of proteins that includes catalase, heat shock protein 70, peroxiredoxin 2 and carbonic anhydrase. High amounts of immunoglobulins and C3 have also been found to be associated with microparticles, accounting for their intense phagocytosis. The effect of p72Syk kinase inhibitors on the release of microparticles from thalassemia intermedia erythrocytes may indicate new perspectives for controlling the release of circulating microparticles in hemolytic anemias.


PLOS ONE | 2012

Haemozoin Induces Early Cytokine-Mediated Lysozyme Release from Human Monocytes through p38 MAPK- and NF-kappaB- Dependent Mechanisms

Manuela Polimeni; Elena Valente; Elisabetta Aldieri; Amina Khadjavi; Giuliana Giribaldi; Mauro Prato

Malarial pigment (natural haemozoin, HZ) is a ferriprotoporphyrin IX crystal produced by Plasmodium parasites after haemoglobin catabolism. HZ-fed human monocytes are functionally compromised, releasing increased amounts of pro-inflammatory molecules, including cytokines, chemokines and cytokine-related proteolytic enzyme Matrix Metalloproteinase-9 (MMP-9), whose role in complicated malaria has been recently suggested. In a previous work HZ was shown to induce through TNFalpha production the release of monocytic lysozyme, an enzyme stored in gelatinase granules with MMP-9. Here, the underlying mechanisms were investigated. Results showed that HZ lipid moiety promoted early but not late lysozyme release. HZ-dependent lysozyme induction was abrogated by anti-TNFalpha/IL-1beta/MIP-1alpha blocking antibodies and mimicked by recombinant cytokines. Moreover, HZ early activated either p38 MAPK or NF-kappaB pathways by inducing: p38 MAPK phosphorylation; cytosolic I-kappaBalpha phosphorylation and degradation; NF-kappaB nuclear translocation and DNA-binding. Inhibition of both routes through selected molecules (SB203580, quercetin, artemisinin, parthenolide) prevented HZ-dependent lysozyme release. These data suggest that HZ-triggered overproduction of TNFalpha, IL-1beta and MIP-1alpha mediates induction of lysozyme release from human monocytes through activation of p38 MAPK and NF-kappaB pathways, providing new evidence on mechanisms underlying the HZ-enhanced monocyte degranulation in falciparum malaria and the potential role for lysozyme as a new affordable marker in severe malaria.


RSC Advances | 2014

Ultrasound-activated decafluoropentane-cored and chitosan-shelled nanodroplets for oxygen delivery to hypoxic cutaneous tissues

Chiara Magnetto; Mauro Prato; Amina Khadjavi; Giuliana Giribaldi; Ivana Fenoglio; Jithin Jose; Giulia Rossana Gulino; Federica Cavallo; Elena Quaglino; Emilio Benintende; Gianfranco Varetto; Adriano Troia; Roberta Cavalli; Caterina Guiot

Ultrasound (US)-activated perfluoropentane-cored oxygen-loaded nanobubbles (OLNBs) were recently proposed as adjuvant therapeutic tools for pathologies of different etiology sharing hypoxia as a common feature (e.g. diabetes-associated chronic wounds, anaerobic infections, cancer). Here we introduce a new platform of oxygen nanocarriers, constituted of 2H,3H-decafluoropentane (DFP) as core fluorocarbon and chitosan as shell polysaccharide, and available either in liquid or gel formulations. Such oxygen-loaded nanodroplets (OLNDs) display spherical morphology, ∼700 nm diameters, cationic surfaces, good oxygen carrying capacity (without singlet oxygen generation after sterilization by ultraviolet-C rays), and no toxic effects on human keratinocytes. In vitro, OLNDs are more effective in releasing oxygen to hypoxic environments than former OLNBs, either with or without complementary US administration (f = 1 MHz; P = 5 W). In vivo, sonication of topically applied OLNDs appears essential to allow significant and time-sustained oxygen release. Taken together, the present data suggest that US-activated chitosan-shelled/DFP-cored OLNDs might be innovative, suitable and cost-effective devices to treat several hypoxia-associated pathologies of the cutaneous tissues.


Cell Biochemistry and Function | 2014

Involvement of p38 MAPK in haemozoin-dependent MMP-9 enhancement in human monocytes

Amina Khadjavi; Elena Valente; Giuliana Giribaldi; Mauro Prato

The lipid moiety of natural haemozoin (nHZ, malarial pigment) was previously shown to enhance expression and release of human monocyte matrix metalloproteinase‐9 (MMP‐9), and a major role for 15‐(S,R)‐hydroxy‐6,8,11,13‐eicosatetraenoic acid (15‐HETE), a nHZ lipoperoxidation product, was proposed. Here, the underlying mechanisms were investigated, focusing on the involvement of mitogen‐activated protein kinases (MAPKs). Results showed that nHZ promoted either early or late p38 MAPK phosphorylation; however, nHZ did not modify basal phosphorylation/expression ratios of extracellular signal‐regulated kinase‐1/2 and c‐jun N‐terminal kinase‐1/2. 15‐HETE mimicked nHZ effects on p38 MAPK, whereas lipid‐free synthetic (s)HZ and delipidized (d)HZ did not. Consistently, both nHZ and 15‐HETE also promoted phosphorylation of MAPK‐activated protein kinase‐2, a known p38 MAPK substrate; such an effect was abolished by SB203580, a synthetic p38 MAPK inhibitor. SB203580 also abrogated nHZ‐dependent and 15‐HETE‐dependent enhancement of MMP‐9 mRNA and protein (latent and activated forms) levels in cell lysates and supernatants. Collectively, these data suggest that in human monocytes, nHZ and 15‐HETE upregulate MMP‐9 expression and secretion through activation of p38 MAPK pathway. The present work provides new evidence on mechanisms underlying MMP‐9 deregulation in malaria, which might be helpful to design new specific drugs for adjuvant therapy in complicated malaria. Copyright


Journal of Proteomics | 2013

Proteomic identification of Reticulocalbin 1 as potential tumor marker in renal cell carcinoma.

Giuliana Giribaldi; G. Barbero; Giorgia Mandili; Lorenzo Daniele; Amina Khadjavi; Agata Notarpietro; Daniela Ulliers; Mauro Prato; Valerio Giacomo Minero; Antonino Battaglia; Marco Allasia; A. Bosio; Anna Sapino; Paolo Gontero; Bruno Frea; Dario Fontana; P. Destefanis

UNLABELLED Renal cell carcinoma (RCC) biomarkers are necessary for diagnosis and prognosis. They serve to monitor therapy response and follow-up, as drug targets, and therapy predictors in personalized treatments. Proteomics is a suitable method for biomarker discovery. Here we investigate differential protein expression in RCC, and we evaluate Reticulocalbin 1 (RCN1) use as a new potential marker. Neoplastic and healthy tissue samples were collected from 24 RCC patients during radical nephrectomy. Seven specimens were firstly processed by proteomic analysis (2-DE and MALDI-TOF) and 18 differentially expressed proteins from neoplastic and healthy renal tissues were identified. Among them, RCN1 was over-expressed in all cancer specimens analyzed by proteomics. Consequently RCN1 use as a potential marker was further evaluated in all 24 donors. RCN1 expression was verified by Western blotting (WB) and immunohistochemistry (IHC). WB analysis confirmed RCN1 over-expression in 21 out of 24 tumor specimens, whereas IHC displayed focal or diffuse expression of RCN1 in all 24 RCC tissues. Thus RCN1 appears as a potential marker for clinical approaches. A larger histopathological trial will clarify the prognostic value of RCN1 in RCC. BIOLOGICAL SIGNIFICANCE The present work aimed at finding new biomarkers for RCC - a life-threatening disease characterized by high incidence in Western countries - by performing differential proteomic analysis of neoplastic and normal renal tissues obtained from a small cohort of RCC patients. Some of the identified proteins have been previously associated to renal cancer however data confirming the possible use of these proteins in clinical practice are not available to date. By IHC we demonstrated that RCN1 could be easily employed in clinical practice, confirming RCN1 over-expression in RCC tissues of all examined patients, and weak protein expression in healthy renal tissues only in correspondence to the renal tubule section. These data indicate a promising role of RCN1 as a possible marker in RCC and indicate the proximal convoluted renal tubule as a putative origin point for RCC. Since IHC staining displayed different grades of intensity in tested tissues, we hypothesized that RCN1 could also be employed as a prognostic marker or as a response predictor for RCC-targeted therapy. To test such a hypothesis, a larger retrospective trial on paraffin-embedded tissues obtained from radical or partial nephrectomy of RCC patients is planned to be performed by our group.


Biofactors | 2013

Role of 15‐hydroxyeicosatetraenoic acid in hemozoin‐induced lysozyme release from human adherent monocytes

Manuela Polimeni; Elena Valente; Elisabetta Aldieri; Amina Khadjavi; Giuliana Giribaldi; Mauro Prato

Natural hemozoin (nHZ), a lipid-bound ferriprotoporphyrin IX crystal produced by Plasmodium parasites after hemoglobin catabolism, seriously compromises the functions of human monocytes, and 15-hydroxyeicosatetraenoic acid (15-HETE) and 4-hydroxynonenal (4-HNE), two nHZ lipoperoxidation products, have been related to such a functional impairment. nHZ was recently shown to promote inflammation-mediated lysozyme release from human monocytes through p38 mitogen-activated protein kinase- (MAPK)- and nuclear factor (NF)-κB-dependent mechanisms. This study aimed at identifying the molecule of nHZ lipid moiety that was responsible for these effects. Results showed that 15-HETE mimicked nHZ effects on lysozyme release, whereas 4-HNE did not. 15-HETE-enhanced lysozyme release was abrogated by anti-TNF-α and anti-IL-1β-blocking antibodies and mimicked by recombinant cytokines; on the contrary, MIP-1α/CCL3 was not involved as a soluble mediator of 15-HETE effects. Moreover, 15-HETE early activated p38 MAPK and NF-κB pathways by inducing p38 MAPK phosphorylation; cytosolic I-κBα phosphorylation and degradation; NF-κB nuclear translocation and DNA-binding. Inhibition of both routes through chemical inhibitors (SB203580, quercetin, artemisinin, and parthenolide) prevented 15-HETE-dependent lysozyme release. Collectively, these data suggest that 15-HETE plays a major role in nHZ-enhanced monocyte degranulation.


PLOS ONE | 2015

2H,3H-decafluoropentane-based nanodroplets: new perspectives for oxygen delivery to hypoxic cutaneous tissues.

Mauro Prato; Chiara Magnetto; Jithin Jose; Amina Khadjavi; Federica Cavallo; Elena Quaglino; Alice Panariti; Ilaria Rivolta; Emilio Benintende; Gianfranco Varetto; Monica Argenziano; Adriano Troia; Roberta Cavalli; Caterina Guiot

Perfluoropentane (PFP)-based oxygen-loaded nanobubbles (OLNBs) were previously proposed as adjuvant therapeutic tools for pathologies of different etiology sharing hypoxia as a common feature, including cancer, infection, and autoimmunity. Here we introduce a new platform of oxygen nanocarriers, based on 2H,3H-decafluoropentane (DFP) as core fluorocarbon. These new nanocarriers have been named oxygen-loaded nanodroplets (OLNDs) since DFP is liquid at body temperature, unlike gaseous PFP. Dextran-shelled OLNDs, available either in liquid or gel formulations, display spherical morphology, ~600 nm diameters, anionic charge, good oxygen carrying capacity, and no toxic effects on human keratinocytes after cell internalization. In vitro OLNDs result more effective in releasing oxygen to hypoxic environments than former OLNBs, as demonstrated by analysis through oxymetry. In vivo, OLNDs effectively enhance oxy-hemoglobin levels, as emerged from investigation by photoacoustic imaging. Interestingly, ultrasound (US) treatment further improves transdermal oxygen release from OLNDs. Taken together, these data suggest that US-activated, DFP-based OLNDs might be innovative, suitable and cost-effective devices to topically treat hypoxia-associated pathologies of the cutaneous tissues.


Future Microbiology | 2015

Antimicrobial chitosan nanodroplets: new insights for ultrasound-mediated adjuvant treatment of skin infection

Giuliana Banche; Mauro Prato; Chiara Magnetto; Valeria Allizond; Giuliana Giribaldi; Monica Argenziano; Amina Khadjavi; Giulia Rossana Gulino; Nicole Finesso; Narcisa Mandras; Vivian Tullio; Roberta Cavalli; Caterina Guiot; Anna Maria Cuffini

BACKGROUND Chronic wounds, characterized by hypoxia, inflammation and impaired tissue remodeling, are often worsened by bacterial/fungal infections. Intriguingly, chitosan-shelled/decafluoropentane-cored oxygen-loaded nanodroplets (OLNs) have proven effective in delivering oxygen to hypoxic tissues. AIM The present work aimed at investigating nanodroplet antimicrobial properties against methicillin-resistant Staphylococcus aureus (MRSA) or Candida albicans, toxicity on human keratinocytes (HaCaT) and ultrasound (US)-triggered transdermal delivery. MATERIALS & METHODS Nanodroplet antibacterial/antifungal properties, human cytotoxicity, and US-triggered transdermal delivery were measured through microbiological, biochemical, and sonophoresis assays, respectively. RESULTS OLNs and oxygen-free nanodroplets (OFNs) displayed short- or long-term cytostatic activity against MRSA or Candida albicans, respectively. OLNs were not toxic to keratinocytes, whereas OFNs slightly affected cell viability. Complementary US treatment promoted OLN transdermal delivery. CONCLUSION As such, US-activated chitosan-shelled OLNs appear as promising, nonconventional and innovative tools for adjuvant treatment of infected chronic wounds.


Asian Pacific Journal of Tropical Medicine | 2011

Macrophage inflammatory protein-1alpha mediates matrix metalloproteinase-9 enhancement in human adherent monocytes fed with malarial pigment.

Giuliana Giribaldi; Elena Valente; Amina Khadjavi; Manuela Polimeni; Mauro Prato

OBJECTIVE To investigate the role of macrophage inflammatory protein-1alpha (MIP-1alpha) in the detrimental enhancement of matrix metalloproteinase-9 (MMP-9) expression, release and activity induced by phagocytosis of malarial pigment (haemozoin, HZ) in human monocytes. METHODS Human adherent monocytes were unfed/fed with native HZ for 2 h. After 24 hours, MIP-1alpha production was evaluated by ELISA in cell supernatants. Alternatively, HZ-unfed/fed monocytes were treated in presence/absence of anti-human MIP-1alpha blocking antibodies or recombinant human MIP-1alpha for 15 h (RNA studies) or 24 h (protein studies); therefore, MMP-9 mRNA expression was evaluated in cell lysates by Real Time RT-PCR, whereas proMMP-9 and active MMP-9 protein release were measured in cell supernatants by Western blotting and gelatin zymography. RESULTS Phagocytosis of HZ by human monocytes increased production of MIP-1 alpha, mRNA expression of MMP-9 and protein release of proMMP-9 and active MMP-9. All the HZ-enhancing effects on MMP-9 were abrogated by anti-human MIP-1alpha blocking antibodies and mimicked by recombinant human MIP-1alpha. CONCLUSIONS The present work suggests a role for MIP-1alpha in the HZ-dependent enhancement of MMP-9 expression, release and activity observed in human monocytes, highlighting new detrimental effects of HZ-triggered proinflammatory response by phagocytic cells in falciparum malaria.

Collaboration


Dive into the Amina Khadjavi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge