Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Giorgia Mataluni.
The Journal of Neuroscience | 2008
Silvia Rossi; Valentina De Chiara; Alessandra Musella; Hajime Kusayanagi; Giorgia Mataluni; Giorgio Bernardi; Alessandro Usiello; Diego Centonze
Exposure to stressful events has a myriad of consequences in animals and in humans, and triggers synaptic adaptations in many brain areas. Stress might also alter cannabinoid-receptor-mediated transmission in the brain, but no physiological study has addressed this issue so far. In the present study, we found that social defeat stress, induced in mice by exposure to aggression, altered cannabinoid CB1-receptor-mediated control of synaptic transmission in the striatum. In fact, the presynaptic inhibition of GABAergic IPSCs induced by the cannabinoid CB1 receptor agonist HU210 [(6a R )-trans-3-(1,1-dimethylheptyl)-6a,7,10,10a-tetrahydro-1-hydroxy-6,6-dimethyl-6H-dibenzo[b,d]pyran-9-methanol] was reduced after a single stressful episode and fully abolished after 3 and 7 d of stress exposure. Repeated psychoemotional stress also impaired the sensitivity of GABA synapses to endocannabinoids mobilized by group I metabotropic glutamate receptor stimulation, whereas the cannabinoid CB1-mediated control of glutamate transmission was unaffected by repeated exposure to an aggressor. Corticosteroids released in response to the activation of the hypothalamic–pituitary–adrenal axis played a major role in the synaptic defects observed in stressed animals, because these alterations were fully prevented by pharmacological blockade of glucocorticoid receptors and were mimicked by corticosterone injections. The recovery of stress-induced synaptic defects was favored when stressed mice were given access to a running wheel or to sucrose consumption, which function as potent natural rewards. A similar rescuing effect was obtained by a single injection of cocaine, a psychostimulant with strong rewarding properties. Targeting cannabinoid CB1 receptors or endocannabinoid metabolism might be a valuable option to treat stress-associated neuropsychiatric conditions.
Neurobiology of Disease | 2009
Silvia Rossi; Roberto Furlan; Valentina De Chiara; Alessandra Musella; Temistocle Lo Giudice; Giorgia Mataluni; Francesca Cavasinni; Cristina Cantarella; Giorgio Bernardi; Luca Muzio; Alessandro Martorana; Gianvito Martino; Diego Centonze
Voluntary exercise is beneficial in models of primarily neurodegenerative disorders. Whether exercise also affects inflammatory neurodegeneration is unknown. In the present study, we evaluated the clinical, synaptic and neuropathological effects of voluntary wheel running in mice with myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis. Exercising EAE mice exhibited less severe neurological deficits compared to control EAE animals. The sensitivity of striatal GABA synapses to the stimulation of cannabinoid CB1 receptors was dramatically downregulated following EAE induction, and was rescued by exercise in EAE mice with access to a running wheel. Finally, we found that exercise was able to contrast dendritic spine loss induced by EAE in striatal neurons, although the degree of inflammatory response was similar in the two experimental groups. Our work suggests that life style and experiences can impact the clinical course of inflammatory neurodegenerative diseases by affecting their synaptic bases.
Neuropsychopharmacology | 2010
Valentina De Chiara; Francesco d’Errico; Alessandra Musella; Silvia Rossi; Giorgia Mataluni; Lucia Sacchetti; Alberto Siracusano; Maura Castelli; Francesca Cavasinni; Giorgio Bernardi; Alessandro Usiello; Diego Centonze
The endogenous cannabinoid system is involved in the regulation of the central reward pathway. Running wheel and sucrose consumption have rewarding and reinforcing properties in rodents, and share many neurochemical and behavioral characteristics with drug addiction. In this study, we investigated whether running wheel or sucrose consumption altered the sensitivity of striatal synapses to the activation of cannabinoid CB1 receptors. We found that cannabinoid CB1 receptor-mediated presynaptic control of striatal inhibitory postsynaptic currents was remarkably potentiated after these environmental manipulations. In contrast, the sensitivity of glutamate synapses to CB1 receptor stimulation was unaltered, as well as that of GABA synapses to the stimulation of presynaptic GABAB receptors. The sensitization of cannabinoid CB1 receptor-mediated responses was slowly reversible after the discontinuation of running wheel or sucrose consumption, and was also detectable following the mobilization of endocannabinoids by metabotropic glutamate receptor 5 stimulation. Finally, we found that the upregulation of cannabinoid transmission induced by wheel running or sucrose had a crucial role in the protective effects of these environmental manipulations against the motor and synaptic consequences of stress.
The Journal of Neuroscience | 2010
V. De Chiara; F. Angelucci; Stefano Rossi; Alessandra Musella; Francesca Cavasinni; Cristina Cantarella; Giorgia Mataluni; Lucia Sacchetti; Francesco Napolitano; Maura Castelli; C. Caltagirone; Giorgio Bernardi; Mauro Maccarrone; Alessandro Usiello; Diego Centonze
The role of brain-derived neurotrophic factor (BDNF) in emotional processes suggests an interaction with the endocannabinoid system. Here, we addressed the functional interplay between BDNF and cannabinoid CB1 receptors (CB1Rs) in the striatum, a brain area in which both BDNF and CB1s play a role in the emotional consequences of stress and of rewarding experiences. BDNF potently inhibited CB1R function in the striatum, through a mechanism mediated by altered cholesterol metabolism and membrane lipid raft function. The effect of BDNF was restricted to CB1Rs controlling GABA-mediated IPSCs (CB1R(GABA)), whereas CB1Rs modulating glutamate transmission and GABAB receptors were not affected. The action of BDNF on CB1R(GABA) function was tyrosine kinase dependent and was complete even after receptor sensitization with cocaine or environmental manipulations activating the dopamine (DA)-dependent reward system. In mice lacking one copy of the BDNF gene (BDNF+/−), CB1R(GABA) responses were potentiated and were preserved from the action of haloperidol, a DA D2 receptor (D2R) antagonist able to fully abolish CB1R(GABA) function in rewarded animals. Haloperidol also enhanced BDNF levels in the striatum, suggesting that this neurotrophin may act as a downstream effector of D2Rs in the modulation of cannabinoid signaling. Accordingly, 5 d cocaine exposure both reduced striatal BDNF levels and increased CB1R(GABA) activity, through a mechanism dependent on D2Rs. The present study identifies a novel mechanism of CB1R regulation mediated by BDNF and cholesterol metabolism and provides some evidence that DA D2R-dependent modulation of striatal CB1R activity is mediated by this neurotrophin.
Neuroscience | 2010
Alessandra Musella; V. De Chiara; S. Rossi; Francesca Cavasinni; Maura Castelli; Cristina Cantarella; Giorgia Mataluni; Giorgio Bernardi; Diego Centonze
The neurotransmitter acetylcholine (Ach) controls both excitatory and inhibitory synaptic transmission in the striatum. Here, we investigated the involvement of the endocannabinoid system in Ach-mediated inhibition of striatal GABA transmission, and the potential role of transient receptor potential vanilloid 1 (TRPV1) channels in the control of Ach-endocannabinoid coupling. We found that inhibition of Ach degradation and direct pharmacological stimulation of muscarinic M1 receptors reduced striatal inhibitory postsynaptic currents (IPSCs) through the stimulation of 2-arachidonoylglicerol (2AG) synthesis and the activation of cannabinoid CB1 receptors. The effects of M1 receptor activation on IPSCs were occlusive with those of metabotropic glutamate receptor 5 stimulation, and were prevented in the presence of capsaicin, agonist of TRPV1 channels. Elevation of anandamide (AEA) tone with URB597, a blocker of fatty acid amide hydrolase, mimicked the effects of capsaicin, indicating that endogenous AEA acts as an endovanilloid substance in the control of M1-dependent 2AG-mediated synaptic effects in the striatum. Accordingly, both capsaicin and URB597 effects were absent in mice lacking TRPV1 channels. Pharmacological interventions targeting AEA metabolism and TRPV1 channels might be considered alternative therapeutic routes in disorders of striatal cholinergic or endocannabinoid neurotransmission.
Multiple Sclerosis Journal | 2011
Stefano Rossi; Raffaele Mancino; Alessandra Bergami; Francesco Mori; Maura Castelli; V De Chiara; Valeria Studer; Giorgia Mataluni; Giulia Maria Sancesario; V Parisi; Hajime Kusayanagi; Giorgio Bernardi; C Nucci; Sergio Bernardini; Gianvito Martino; Roberto Furlan; Diego Centonze
Background: Inflammation triggers secondary neurodegeneration in multiple sclerosis (MS). Objectives: It is unclear whether classical anti-inflammatory cytokines have the potential to interfere with synaptic transmission and neuronal survival in MS. Methods: Correlation analyses between cerebrospinal fluid (CSF) contents of anti-inflammatory cytokines and molecular, imaging, clinical, and neurophysiological measures of neuronal alterations were performed. Results: Our data suggest that interleukin-13 (IL-13) plays a neuroprotective role in MS brains. We found, in fact, that the levels of IL-13 in the CSF of MS patients were correlated with the contents of amyloid-β1-42. Correlations were also found between IL-13 and imaging indexes of axonal and neuronal integrity, such as the retinal nerve fibre layer thickness and the macular volume evaluated by optical coherence tomography. Furthermore, the levels of IL-13 were related to better performance in the low-contrast acuity test and Multiple Sclerosis Functional Composite scoring. Finally, by means of transcranial magnetic stimulation, we have shown that GABAA-mediated cortical inhibition was more pronounced in patients with high IL-13 levels in the CSF, as expected for a neuroprotective, anti-excitotoxic effect. Conclusions: The present correlation study provides some evidence for the involvement of IL-13 in the modulation of neuronal integrity and synaptic function in patients with MS.
European Journal of Neuroscience | 2008
Diego Centonze; Silvia Rossi; Paola De Bartolo; Valentina De Chiara; Francesca Foti; Alessandra Musella; Giorgia Mataluni; Stefano Rossi; Giorgio Bernardi; Giacomo Koch; Laura Petrosini
Recent findings proposed that the cerebellum and the striatum, key structures in motor control, are more interconnected than commonly believed, and that the cerebellum may influence striatal activity. In the present study, the possible changes of synaptic transmission in the striatum of hemicerebellectomized rats have been investigated. Neurophysiological recordings showed a significant facilitation of glutamate transmission in the contralateral striatum occurring early following hemicerebellectomy. This process of synaptic adaptation appears to be relevant for the compensation of cerebellar deficits. Accordingly, pharmacological blockade of glutamate N‐methyl‐d‐aspartate (NMDA) receptors with MK‐801 prevented the rearrangement of excitatory synapses in the striatum and interfered with the recovery from motor disturbances in rats with cerebellar lesions. Hemicerebellectomy also perturbed γ‐aminobutyric acid (GABA) transmission in contralateral but not ipsilateral striatum. The present findings advance the role of striatal excitatory transmission in the compensation of cerebellar deficits, providing support to the notion that adaptations of striatal function exert a role in the recovery of cerebellar symptoms.
Neuropharmacology | 2009
Silvia Rossi; Valentina De Chiara; Alessandra Musella; Giorgia Mataluni; Lucia Sacchetti; Alberto Siracusano; Giorgio Bernardi; Alessandro Usiello; Diego Centonze
Caffeine, the psychoactive ingredient of coffee and of many soft drinks, is frequently abused by humans especially during stressful live events. The endocannabinoid system is involved in the central effects of many psychoactive compounds and of stress. Whether caffeine alters the cannabinoid system and interferes with stress-induced synaptic alterations is however unknown. We have studied electrophysiologically the sensitivity of cannabinoid receptors modulating synaptic transmission in the striatum of mice exposed to caffeine in their drinking solution. Chronic caffeine assumption sensitized GABAergic synapses to the presynaptic effect of cannabinoid CB1 receptor stimulation by exo- and endocannabinoids. Caffeine was conversely unable to affect the sensitivity of cannabinoid receptors modulating glutamate transmission. The synaptic effects of caffeine were slowly reversible after its removal from the drinking solution. Furthermore, although exposure to caffeine for only 24h did not produce measurable changes of the sensitivity of cannabinoid CB1 receptors, it was able to contrast the down-regulation of CB1 receptor-mediated responses after social defeat stress. Our data suggest that the cannabinoid system is implicated in the psychoactive properties of caffeine and in the ability of caffeine to reduce the pathological consequences of stress.
Neuroscience Letters | 2006
Silvia Rossi; Chiara Prosperetti; Barbara Picconi; Valentina De Chiara; Giorgia Mataluni; Giorgio Bernardi; Paolo Calabresi; Diego Centonze
Altered glutamate transmission in the striatum has been proposed to play a critical role in the pathophysiology of Huntingtons disease (HD), a genetic disorder associated with impaired activity of the mitochondrial complex II (succinate dehydrogenase, SD). In the present study, we recorded spontaneous (sEPSCs) and miniature excitatory postsynaptic currents (mEPSCs) from striatal neurons of both toxic (systemic administration of 3-nitropropionic acid in rats) and genetic models of HD (R6/2 transgenic mice). In both models, we found a significant down-regulation of glutamate transmission, suggesting that reduced synaptic excitation of the input structure of the basal ganglia represents a physiological correlate of HD.
Molecular Nutrition & Food Research | 2010
Silvia Rossi; Valentina De Chiara; Alessandra Musella; Giorgia Mataluni; Lucia Sacchetti; Alberto Siracusano; Giorgio Bernardi; Alessandro Usiello; Diego Centonze
Caffeine is the most commonly self-administered psychoactive substance worldwide. At usual doses, the effects of caffeine on vigilance, attention, mood and arousal largely depend on the modulation of central adenosine receptors. The present review article describes the action of caffeine within the striatum, to provide a possible molecular mechanism at the basis of the psychomotor and reinforcing properties of this pharmacological agent. The striatum is in fact a subcortical area involved in sensorimotor, cognitive, and emotional processes, and recent experimental findings showed that chronic caffeine consumption enhances the sensitivity of striatal GABAergic synapses to the stimulation of cannabinoid CB1 receptors. The endocannabinoid system is involved in the psychoactive effects of many compounds, and adenosine A2A receptors (the main receptor target of caffeine) elicit a permissive effect towards CB1 receptors, thus suggesting that A2A-CB1 receptor interaction plays a major role in the generation and maintenance of caffeine reinforcing behavior. Aim of this review is to describe the effects of caffeine on striatal neurotransmission with special reference to the modulation of the endocannabinoid system.