Giorgia Zadra
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Giorgia Zadra.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Valentina Vaira; Giuseppe Fedele; Saumyadipta Pyne; Ester Fasoli; Giorgia Zadra; Dyane Bailey; Eric L. Snyder; Alice Faversani; Guido Coggi; Richard Flavin; Silvano Bosari; Massimo Loda
Predicting drug response in cancer patients remains a major challenge in the clinic. We have perfected an ex vivo, reproducible, rapid and personalized culture method to investigate antitumoral pharmacological properties that preserves the original cancer microenvironment. Response to signal transduction inhibitors in cancer is determined not only by properties of the drug target but also by mutations in other signaling molecules and the tumor microenvironment. As a proof of concept, we, therefore, focused on the PI3K/Akt signaling pathway, because it plays a prominent role in cancer and its activity is affected by epithelial–stromal interactions. Our results show that this culture model preserves tissue 3D architecture, cell viability, pathway activity, and global gene-expression profiles up to 5 days ex vivo. In addition, we show pathway modulation in tumor cells resulting from pharmacologic intervention in ex vivo culture. This technology may have a significant impact on patient selection for clinical trials and in predicting response to small-molecule inhibitor therapy.
The Journal of Pathology | 2011
Richard Flavin; Giorgia Zadra; Massimo Loda
Cancer cells synthesize de novo large amounts of fatty acids and cholesterol, irrespective of the circulating lipid levels and benefit from this increased lipid synthesis in terms of growth advantage, self‐survival and drug resistance. Key lipogenic alterations that commonly occur in prostate cancer include over‐expression of the enzyme fatty acid synthase (FASN) and deregulation of the 5‐AMP‐activated protein kinase (AMPK). FASN is a key metabolic enzyme that catalyses the synthesis of palmitate from the condensation of malonyl‐CoA and acetyl‐CoA de novo and plays a central role in energy homeostasis, by converting excess carbon intake into fatty acids for storage. AMPK functions as a central metabolic switch that governs glucose and lipid metabolism. Recent interest has focused on the potential of targeting metabolic pathways that may be altered during prostate tumorigenesis and progression. Several small molecule inhibitors of FASN have now been described or in development for therapeutic use; in addition, drugs that directly or indirectly induce AMPK activation have potential benefit in prostate cancer prevention and treatment. Copyright
Biochimica et Biophysica Acta | 2013
Giorgia Zadra; Cornelia Photopoulos; Massimo Loda
Prostate cancer (PCa) metabolism appears to be unique in comparison with other types of solid cancers. Normal prostate cells mainly rely on glucose oxidation to provide precursors for the synthesis and secretion of citrate, resulting in an incomplete Krebs cycle and minimal oxidative phosphorylation for energy production. In contrast, during transformation, PCa cells no longer secrete citrate and they reactivate the Krebs cycle as energy source. Moreover, primary PCas do not show increased aerobic glycolysis and therefore they are not efficiently detectable with (18)F-FDG-PET. However, increased de novo lipid synthesis, strictly intertwined with deregulation in classical oncogenes and oncosuppressors, is an early event of the disease. Up-regulation and increased activity of lipogenic enzymes (including fatty acid synthase and choline kinase) occurs throughout PCa carcinogenesis and correlates with worse prognosis and poor survival. Thus, lipid precursors such as acetate and choline have been successfully used as alternative tracers for PET imaging. Lipid synthesis intermediates and FA catabolism also emerged as important players in PCa maintenance. Finally, epidemiologic studies suggested that systemic metabolic disorders including obesity, metabolic syndrome, and diabetes as well as hypercaloric and fat-rich diets might increase the risk of PCa. However, how metabolic disorders contribute to PCa development and whether dietary lipids and de novo lipids synthesized intra-tumor are differentially metabolized still remains unclear. In this review, we examine the switch in lipid metabolism supporting the development and progression of PCa and we discuss how we can exploit its lipogenic nature for therapeutic and diagnostic purposes. This article is part of a Special Issue entitled Lipid Metabolism in Cancer.
Laboratory Investigation | 2008
Michelangelo Fiorentino; Giorgia Zadra; Emanuele Palescandolo; Giuseppe Fedele; Dyane Bailey; Christopher Fiore; Paul L. Nguyen; Toshiro Migita; Raffaella Zamponi; Dolores Di Vizio; Carmen Priolo; Chandan Sharma; Wanling Xie; Martin E. Hemler; Lorelei A. Mucci; Edward Giovannucci; Stephen Finn; Massimo Loda
Fatty acid synthase (FASN), a key metabolic enzyme for liponeogenesis highly expressed in several human cancers, displays oncogenic properties such as resistance to apoptosis and induction of proliferation when overexpressed. To date, no mechanism has been identified to explain the oncogenicity of FASN in prostate cancer. We generated immortalized prostate epithelial cells (iPrECs) overexpressing FASN, and found that 14C-acetate incorporation into palmitate synthesized de novo by FASN was significantly elevated in immunoprecipitated Wnt-1 when compared to isogenic cells not overexpressing FASN. Overexpression of FASN caused membranous and cytoplasmic β-catenin protein accumulation and activation, whereas FASN knockdown by short-hairpin RNA resulted in a reduction in the extent of β-catenin activation. Orthotopic transplantation of iPrECs overexpressing FASN in nude mice resulted in invasive tumors that overexpressed β-catenin. A strong significant association between FASN and cytoplasmic (stabilized) β-catenin immunostaining was found in 862 cases of human prostate cancer after computerized subtraction of the membranous β-catenin signal (P<0.001, Spearmans ρ=0.33). We propose that cytoplasmic stabilization of β-catenin through palmitoylation of Wnt-1 and subsequent activation of the pathway is a potential mechanism of FASN oncogenicity in prostate cancer.
Embo Molecular Medicine | 2014
Giorgia Zadra; Cornelia Photopoulos; Svitlana Tyekucheva; Pedram Heidari; Qing Ping Weng; Giuseppe Fedele; Hong Liu; Natalia Scaglia; Carmen Priolo; Ewa Sicinska; Umar Mahmood; Sabina Signoretti; Neal Birnberg; Massimo Loda
5′AMP‐activated kinase (AMPK) constitutes a hub for cellular metabolic and growth control, thus representing an ideal therapeutic target for prostate cancers (PCas) characterized by increased lipogenesis and activation of mTORC1 pathway. However, whether AMPK activation itself is sufficient to block cancer cell growth remains to be determined. A small molecule screening was performed and identified MT 63–78, a specific and potent direct AMPK activator. Here, we show that direct activation of AMPK inhibits PCa cell growth in androgen sensitive and castration resistant PCa (CRPC) models, induces mitotic arrest, and apoptosis. In vivo, AMPK activation is sufficient to reduce PCa growth, whereas the allelic loss of its catalytic subunits fosters PCa development. Importantly, despite mTORC1 blockade, the suppression of de novo lipogenesis is the underpinning mechanism responsible for AMPK‐mediated PCa growth inhibition, suggesting AMPK as a therapeutic target especially for lipogenesis‐driven PCas. Finally, we demonstrate that MT 63–78 enhances the growth inhibitory effect of AR signaling inhibitors MDV3100 and abiraterone. This study thus provides a rationale for their combined use in CRPC treatment.
Molecular Cancer Research | 2015
Giorgia Zadra; Julie L. Batista; Massimo Loda
The precise role of 5′AMP-activated kinase (AMPK) in cancer and its potential as a therapeutic target is controversial. Although it is well established that activation of this energy sensor inhibits the main anabolic processes that sustain cancer cell proliferation and growth, AMPK activation can confer on cancer cells the plasticity to survive under metabolic stress such as hypoxia and glucose deprivation, which are commonly observed in fast growing tumors. Thus, AMPK is referred to as both a “conditional” tumor suppressor and “contextual” oncogene. To add a further layer of complexity, AMPK activation in human cancer tissues and its correlation with tumor aggressiveness and progression appears to vary in different contexts. The current review discusses the different faces of this metabolic regulator, the therapeutic implications of its modulation, and provides an overview of the most relevant data available on AMPK activation and AMPK-activating drugs in human studies. Mol Cancer Res; 13(7); 1059–72. ©2015 AACR.
Clinical Cancer Research | 2010
Giorgia Zadra; Carmen Priolo; Akash Patnaik; Massimo Loda
Although the role of metabolic syndrome (MS) and a high fat diet in prostate cancer (PCa) risk is still a matter of intense debate, it is becoming increasingly clear that obesity can cause perturbations in metabolic pathways that contribute to the pathogenesis and progression of PCa. Moreover, prostate epithelial cells per se undergo a series of metabolic changes, including an increase in de novo lipogenesis, during the process of tumor formation. These metabolic alterations, at both the cellular and organismal levels, are intertwined with genetic aberrations necessary for neoplastic transformation. Thus, altered metabolism is currently subject to intense research efforts and might provide preventative and therapeutic opportunities, as well as a platform for biomarker development. In this article, we review evidence that the metabolic sensor 5′-AMP-activated protein kinase (AMPK), which physiologically integrates nutritional and hormonal signals and regulates cell survival and growth-related metabolic pathways to preserve intracellular ATP levels, represents a link between energy homeostasis and cancer. Thus, when AMPK is not activated, as in the setting of MS and obesity, systemic metabolic alterations permissive to the development of PCa are allowed to proceed unchecked. Hence, the use of AMPK activators and inhibitors of key lipogenic enzymes may represent a promising therapeutic strategy for PCa. Clin Cancer Res; 16(13); 3322–8. ©2010 AACR.
Journal of Pharmacology and Experimental Therapeutics | 2007
Alfredo Gorio; Laura Madaschi; Giorgia Zadra; Giovanni Marfia; Barbara Cavalieri; Riccardo Bertini; Anna Maria Di Giulio
It has been shown that the blockade of CXCR1 and CXCR2 receptors prevents ischemia/reperfusion damage in several types of vascular beds. Reparixin is a recently described inhibitor of human CXCR1/R2 and rat CXCR2 receptor activation. We applied reparixin in rats following traumatic spinal cord injury and determined therapeutic temporal and dosages windows. Treatment with reparixin significantly counteracts secondary degeneration by reducing oligodendrocyte apoptosis, migration to the injury site of neutrophils and ED-1-positive cells. The observed preservation of the white matter might also be secondary to the enhanced proliferation of NG2-positive cells. The expression of macrophage-inflammatory protein-2, tumor necrosis factor-α, interleukin (IL)-6, and IL-1β was also counteracted, and the proliferation of glial fibrillary acidic protein-positive cells was markedly reduced. These effects resulted in a smaller post-traumatic cavity and in a significantly improved recovery of hind limb function. The best beneficial outcome of reparixin treatment required 7-day administration either by i.p. route (15 mg/kg) or subcutaneous infusion via osmotic pumps (10 mg/kg), reaching a steady blood level of 8 μg/ml. Methylprednisolone was used as a reference drug; such treatment reduced cytokine production but failed to affect the rate of hind limb recovery.
Cancer Research | 2014
Carmen Priolo; Saumyadipta Pyne; Joshua Rose; Erzsébet Ravasz Regan; Giorgia Zadra; Cornelia Photopoulos; Stefano Cacciatore; Denise Schultz; Natalia Scaglia; Jonathan E. McDunn; Angelo M. De Marzo; Massimo Loda
Cancer cells may overcome growth factor dependence by deregulating oncogenic and/or tumor-suppressor pathways that affect their metabolism, or by activating metabolic pathways de novo with targeted mutations in critical metabolic enzymes. It is unknown whether human prostate tumors develop a similar metabolic response to different oncogenic drivers or a particular oncogenic event results in its own metabolic reprogramming. Akt and Myc are arguably the most prevalent driving oncogenes in prostate cancer. Mass spectrometry-based metabolite profiling was performed on immortalized human prostate epithelial cells transformed by AKT1 or MYC, transgenic mice driven by the same oncogenes under the control of a prostate-specific promoter, and human prostate specimens characterized for the expression and activation of these oncoproteins. Integrative analysis of these metabolomic datasets revealed that AKT1 activation was associated with accumulation of aerobic glycolysis metabolites, whereas MYC overexpression was associated with dysregulated lipid metabolism. Selected metabolites that differentially accumulated in the MYC-high versus AKT1-high tumors, or in normal versus tumor prostate tissue by untargeted metabolomics, were validated using absolute quantitation assays. Importantly, the AKT1/MYC status was independent of Gleason grade and pathologic staging. Our findings show how prostate tumors undergo a metabolic reprogramming that reflects their molecular phenotypes, with implications for the development of metabolic diagnostics and targeted therapeutics.
Oncogene | 2015
David P. Labbé; Giorgia Zadra; Ericka M. Ebot; Lorelei A. Mucci; Philip W. Kantoff; Massimo Loda; Myles Brown
Diet is hypothesized to be a critical environmentally related risk factor for prostate cancer (PCa) development, and specific diets and dietary components can also affect PCa progression; however, the mechanisms underlying these associations remain elusive. As for a maturing organism, PCa’s epigenome is plastic and evolves from the pre-neoplastic to the metastatic stage. In particular, epigenetic remodeling relies on substrates or cofactors obtained from the diet. Here we review the evidence that bridges dietary modulation to alterations in the prostate epigenome. We propose that such diet-related effects offer a mechanistic link between the impact of different diets and the course of PCa development and progression.