Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giorgio Battaglia is active.

Publication


Featured researches published by Giorgio Battaglia.


Epilepsia | 2011

The clinicopathologic spectrum of focal cortical dysplasias: A consensus classification proposed by an ad hoc Task Force of the ILAE Diagnostic Methods Commission†

Ingmar Blümcke; Maria Thom; Eleonora Aronica; Dawna D. Armstrong; Harry V. Vinters; André Palmini; Ts Jacques; Giuliano Avanzini; A. James Barkovich; Giorgio Battaglia; Albert J. Becker; Carlos Cepeda; Fernando Cendes; Nadia Colombo; Peter B. Crino; J. Helen Cross; Olivier Delalande; François Dubeau; John S. Duncan; Renzo Guerrini; Philippe Kahane; Gary W. Mathern; Imad Najm; Cigdem Ozkara; Charles Raybaud; Alfonso Represa; Noriko Salamon; Andreas Schulze-Bonhage; Laura Tassi; Annamaria Vezzani

Purpose:  Focal cortical dysplasias (FCD) are localized regions of malformed cerebral cortex and are very frequently associated with epilepsy in both children and adults. A broad spectrum of histopathology has been included in the diagnosis of FCD. An ILAE task force proposes an international consensus classification system to better characterize specific clinicopathological FCD entities.


Neurology | 1998

Cortical dysplasia: An immunocytochemical study of three patients

Roberto Spreafico; Giorgio Battaglia; P. Arcelli; F. Andermann; François Dubeau; André Palmini; André Olivier; Jean Guy Villemure; Donatella Tampieri; Giuliano Avanzini; Massimo Avoli

Human cortical dysplastic lesions are frequently associated with severe partial epilepsies. We report an immunocytochemical investigation on cortical tissue from three surgically treated patients, 20, 38, and 14 years old, with intractable epilepsy due to cortical dysplasia. The studies were performed using antibodies recognizing cytoskeletal proteins, calcium-binding proteins, and some subunits of glutamate receptors. The specimens from the three patients displayed common features: (1) focal cytoarchitectural abnormalities with an increased number of giant pyramidal neurons through all cortical layers except layer I; (2) large, round-shaped balloon cells mainly concentrated in the deepest part of the cortex and in the white matter;(3) a decrease of calcium binding protein immunopositive γ-aminobutyric acid (GABA)ergic neurons; and (4) abnormal baskets of parvalbumin-positive terminals around the excitatory (pyramidal and large, round-shaped) neurons. These data provide evidence that the epileptogenicity in these types of cortical dysplasia is due to an increase in excitatory neurons coupled with a decrease in GABAergic interneurons.


Nature Genetics | 2010

Mutations in the mitochondrial protease gene AFG3L2 cause dominant hereditary ataxia SCA28

Daniela Di Bella; Federico Lazzaro; Massimo Plumari; Giorgio Battaglia; Annalisa Pastore; Adele Finardi; Claudia Cagnoli; Filippo Tempia; Marina Frontali; Liana Veneziano; Tiziana Sacco; Enrica Boda; Alessandro Brussino; Florian Bonn; Barbara Castellotti; Silvia Baratta; Caterina Mariotti; Cinzia Gellera; Valentina Fracasso; Stefania Magri; Thomas Langer; Paolo Plevani; Stefano Di Donato; Marco Muzi-Falconi; Franco Taroni

Autosomal dominant spinocerebellar ataxias (SCAs) are genetically heterogeneous neurological disorders characterized by cerebellar dysfunction mostly due to Purkinje cell degeneration. Here we show that AFG3L2 mutations cause SCA type 28. Along with paraplegin, which causes recessive spastic paraplegia, AFG3L2 is a component of the conserved m-AAA metalloprotease complex involved in the maintenance of the mitochondrial proteome. We identified heterozygous missense mutations in five unrelated SCA families and found that AFG3L2 is highly and selectively expressed in human cerebellar Purkinje cells. m-AAA–deficient yeast cells expressing human mutated AFG3L2 homocomplex show respiratory deficiency, proteolytic impairment and deficiency of respiratory chain complex IV. Structure homology modeling indicates that the mutations may affect AFG3L2 substrate handling. This work identifies AFG3L2 as a novel cause of dominant neurodegenerative disease and indicates a previously unknown role for this component of the mitochondrial protein quality control machinery in protecting the human cerebellum against neurodegeneration.


Journal of Neuropathology and Experimental Neurology | 1999

Prenatal methylazoxymethanol treatment in rats produces brain abnormalities with morphological similarities to human developmental brain dysgeneses

Claudia Colacitti; Giulio Sancini; Silvia DeBiasi; Silvana Franceschetti; Antonio Caputi; Carolina Frassoni; Flaminio Cattabeni; Giuliano Avanzini; Roberto Spreafico; Monica Di Luca; Giorgio Battaglia

A double methylazoxymethanol (MAM) intraperitoneal injection was prenatally administered to pregnant rats at gestational day 15 to induce developmental brain dysgeneses. Thirty adult rats from 8 different progenies were investigated with a combined electrophysiological and neuroanatomical analysis. The offspring of treated dams was characterized by extensive cortical layering abnormalities, subpial bands of heterotopic neurons in layer I, and subcortical nodules of heterotopic neurons extending from the periventricular region to the hippocampus and neocortex. The phenotype of cell subpopulations within the heterotopic structures was analyzed by means of antibodies raised against glial and neuronal markers, calcium binding proteins, GABA, and AMPA glutamate receptors. Neurons within the subcortical heterotopic nodules were characterized by abnormal firing properties, with sustained repetitive bursts of action potentials. The subcortical nodules were surrounded by cell clusters with ultrastructural features of young migrating neurons. The immunocytochemical data suggested, moreover, that the subcortical heterotopia were formed by neurons originally committed to the neocortex and characterized by morphological features similar to those found in human periventricular nodular heterotopia. The present study demonstrates that double MAM treatment at gestational day 15 induces in rats developmental brain abnormalities whose anatomical and physiological features bear resemblance to those observed in human brain dysgeneses associated with intractable epilepsy. Therefore, MAM treated rats could be considered as useful tools in investigating the pathogenic mechanisms involved in human developmental brain dysgeneses.


Epilepsia | 2006

Periventricular Nodular Heterotopia: Classification, Epileptic History, and Genesis of Epileptic Discharges

Giorgio Battaglia; Luisa Chiapparini; Silvana Franceschetti; Elena Freri; Laura Tassi; Stefania Bassanini; Flavio Villani; Roberto Spreafico; Ludovico D'Incerti; Tiziana Granata

Summary:  Purpose. Periventricular nodular heterotopia (PNH) is among the most common malformations of cortical development, and affected patients are frequently characterized by focal drug‐resistant epilepsy. Here we analyzed clinical, MRI, and electrophysiologic findings in 54 PNH patients to reevaluate the classification of PNH, relate the anatomic features to epileptic outcome, and ascertain the contribution of PNH nodules to the onset of epileptic discharges.


Brain Pathology | 1999

Taylor's cortical dysplasia: a confocal and ultrastructural immunohistochemical study.

Rita Garbelli; Claudio Munari; Silvia De Biasi; Laura Vitellaro-Zuccarello; Carlo Galli; Manuela Bramerio; Roberto Mai; Giorgio Battaglia; Roberto Spreafico

In the present report we describe the neuropathological characteristics of tissue surgically resected from three patients affected by intractable epilepsy secondary to cortical dysplasia. Common features, suggestive of a focal cortical dysplasia of Taylor, were observed in all specimens. Immunocytochemical procedures were performed using neuronal and glial markers and the sections were observed at light traditional and confocal microscopes. This part of the investigation pointed out: 1. cortical laminar disruption; 2. very large neurons displaying a pyramidal or round shape; 3. ballooned cells; 4. decrease of calcium binding proteins immunoreactivity; 5. abnormal nets of parvalbumin‐ and glutamic acid decarboxylase‐positive puncta around giant neurons but not around ballooned cells. Ultrastructural investigation on the same material provided evidence of a high concentration of neurofilaments in giant neurons and of glial intermediate filaments in ballooned cells. In addition, immunolabeled GABAergic terminals clustered around giant neurons were not found to establish synapses on their cell bodies.


Epilepsia | 2002

Cortical Dysplasia: Electroclinical, Imaging, and Neuropathologic Study of 13 Patients

Laura Tassi; Basile Pasquier; Lorella Minotti; Rita Garbelli; Philippe Kahane; Alim-Louis Benabid; Giorgio Battaglia; C. Munari; Roberto Spreafico

Summary:  Purpose: The aim of this study was to correlate the electroclinical and radiologic data with the neuropathologic findings and surgical outcome in epileptic patients with epilepsy and Taylors focal cortical dysplasia (TFCD) and to characterize further the abnormal intermediate filaments expression in the balloon cell present in the peculiar dysplasia.


Neurobiology of Disease | 2011

Misplaced NMDA receptors in epileptogenesis contribute to excitotoxicity

Angelisa Frasca; Marlien W. Aalbers; Federica Frigerio; Fabio Fiordaliso; Monica Salio; Marco Gobbi; Alfredo Cagnotto; Fabrizio Gardoni; Giorgio Battaglia; Govert Hoogland; Monica Di Luca; Annamaria Vezzani

Pharmacological blockade of NR2B-containing N-methyl-d-aspartate receptors (NMDARs) during epileptogenesis reduces neurodegeneration provoked in the rodent hippocampus by status epilepticus. The functional consequences of NMDAR activation are crucially influenced by their synaptic vs extrasynaptic localization, and both NMDAR function and localization are dependent on the presence of the NR2B subunit and its phosphorylation state. We investigated whether changes in NR2B subunit phosphorylation, and alterations in its neuronal membrane localization and cellular expression occur during epileptogenesis, and if these changes are involved in neuronal cell loss. We also explored NR2B subunit changes both in the acute phase of status epilepticus and in the chronic phase of spontaneous seizures which encompass the epileptogenesis phase. Levels of Tyr1472 phosphorylated NR2B subunit decreased in the post-synaptic membranes from rat hippocampus during epileptogenesis induced by electrical status epilepticus. This effect was concomitant with a reduced interaction between NR2B and post-synaptic density (PSD)-95 protein, and was associated with decreased CREB phosphorylation. This evidence suggests an extra-synaptic localization of NR2B subunit in epileptogenesis. Accordingly, electron microscopy showed increased NR2B both in extra-synaptic and pre-synaptic neuronal compartments, and a concomitant decrease of this subunit in PSD, thus indicating a shift in NR2B membrane localization. De novo expression of NR2B in activated astrocytes was also found in epileptogenesis indicating ectopic receptor expression in glia. The NR2B phosphorylation changes detected at completion of status epilepticus, and interictally in the chronic phase of spontaneous seizures, are predictive of receptor translocation from synaptic to extrasynaptic sites. Pharmacological blockade of NR2B-containing NMDARs by ifenprodil administration during epileptogenesis significantly reduced pyramidal cell loss in the hippocampus, showing that the observed post-translational and cellular changes of NR2B subunit contribute to excitotoxicity. Therefore, pharmacological targeting of misplaced NR2B-containing NMDARs, or prevention of these NMDAR changes, should be considered to block excitotoxicity which develops after various pro-epileptogenic brain injuries.


Epilepsia | 1997

Periventricular Nodular Heterotopia : Epileptogenic Findings

Giorgio Battaglia; Tiziana Granata; Laura Farina; Ludovico D'Incerti; Silvana Franceschetti; Giuliano Avanzini

Summary: Purpose: We studied 17 patients with periventricular nodular heterotopia (PNH) to further investigate the electroclinical pictures and semiology of the associated seizures.


Epilepsy Research | 1998

Altered connections between neocortical and heterotopic areas in methylazoxymethanol-treated rat

Claudia Colacitti; Giulio Sancini; Silvana Franceschetti; Flaminio Cattabeni; Giuliano Avanzini; Roberto Spreafico; Monica Di Luca; Giorgio Battaglia

We are currently investigating various treatments which could determine, in the rat brain, structural abnormalities mimicking those reported in human brain dysgeneses. We can induce the formation of neuronal heterotopia in the progeny of rats by means of a double injection of the cytotoxic agent methylazoxymethanol acetate (MAM) on embryonic day 15. We have now investigated the anatomical connections of these heterotopia by means of anterograde and retrograde tract tracing techniques. The induced heterotopia along the border of the lateral ventricles shared common anatomical features with the periventricular nodules in human periventricular or subcortical nodular heterotopia (PNH). The tract tracing data demonstrated the existence of reciprocal connections between the neuronal heterotopia and the ipsilateral and contralateral cortical areas, and the presence of abnormal cortico-hippocampal and cortico-cortical connections. On the basis of the connectivity patterns, it may be speculated that some cells in the heterotopia could be neurons originally committed to the cortex, that were interrupted in their migration by the MAM treatment. Given the common morphological features seen in human PNH and MAM-induced brain heterotopia, the anatomical and developmental analysis of MAM-treated rats may shed light on the mechanisms by which human brain dysgeneses develop in human patients.

Collaboration


Dive into the Giorgio Battaglia's collaboration.

Top Co-Authors

Avatar

Roberto Spreafico

Carlo Besta Neurological Institute

View shared research outputs
Top Co-Authors

Avatar

Giuliano Avanzini

Carlo Besta Neurological Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tiziana Granata

Carlo Besta Neurological Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Silvana Franceschetti

Carlo Besta Neurological Institute

View shared research outputs
Top Co-Authors

Avatar

Veronica Setola

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge