Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giorgio Divitini is active.

Publication


Featured researches published by Giorgio Divitini.


Nano Letters | 2010

Hierarchical TiO2 Photoanode for Dye-Sensitized Solar Cells

F. Sauvage; F. Di Fonzo; A. Li Bassi; C. S. Casari; Vera Russo; Giorgio Divitini; Caterina Ducati; C. E. Bottani; P. Comte; M. Graetzel

Hierarchical or one-dimensional architectures are among the most exciting developments in material science these recent years. We present a nanostructured TiO(2) assembly combining these two concepts and resembling a forest composed of individual, high aspect-ratio, treelike nanostructures. We propose to use these structures for the photoanode in dye-sensitized solar cells, and we achieved 4.9% conversion efficiency in combination with C101 dye. We demonstrate this morphology beneficial to hamper the electron recombination and also mass transport control in the mesopores when solvent-free ionic liquid electrolyte is used.


Nano Letters | 2012

DNA Origami Nanopores

Nicholas A. W. Bell; Christian Engst; Marc Ablay; Giorgio Divitini; Caterina Ducati; Tim Liedl; Ulrich F. Keyser

We demonstrate the assembly of functional hybrid nanopores for single molecule sensing by inserting DNA origami structures into solid-state nanopores. In our experiments, single artificial nanopores based on DNA origami are repeatedly inserted in and ejected from solid-state nanopores with diameters around 15 nm. We show that these hybrid nanopores can be employed for the detection of λ-DNA molecules. Our approach paves the way for future development of adaptable single-molecule nanopore sensors based on the combination of solid-state nanopores and DNA self-assembly.


Nano Letters | 2013

Self-Cleaning Antireflective Optical Coatings

Stefan Guldin; Peter Kohn; Morgan Stefik; Juho Song; Giorgio Divitini; Fanny Ecarla; Caterina Ducati; Ulrich Wiesner; Ullrich Steiner

Low-cost antireflection coatings (ARCs) on large optical surfaces are an ingredient-technology for high-performance solar cells. While nanoporous thin films that meet the zero-reflectance conditions on transparent substrates can be cheaply manufactured, their suitability for outdoor applications is limited by the lack of robustness and cleanability. Here, we present a simple method for the manufacture of robust self-cleaning ARCs. Our strategy relies on the self-assembly of a block-copolymer in combination with silica-based sol-gel chemistry and preformed TiO2 nanocrystals. The spontaneous dense packing of copolymer micelles followed by a condensation reaction results in an inverse opal-type silica morphology that is loaded with TiO2 photocatalytic hot-spots. The very low volume fraction of the inorganic network allows the optimization of the antireflecting properties of the porous ARC despite the high refractive index of the embedded photocatalytic TiO2 nanocrystals. The resulting ARCs combine high optical and self-cleaning performance and can be deposited onto flexible plastic substrates.


Energy and Environmental Science | 2011

Improved conductivity in dye-sensitised solar cells through block-copolymer confined TiO2 crystallisation

Stefan Guldin; Sven Hüttner; Priti Tiwana; M. Christopher Orilall; Burak Ulgut; Morgan Stefik; Pablo Docampo; Matthias Kolle; Giorgio Divitini; Caterina Ducati; Simon A. T. Redfern; Henry J. Snaith; Ulrich Wiesner; Dominik Eder; Ullrich Steiner

Anatase TiO2 is typically a central component in high performance dye-sensitised solar cells (DSCs). This study demonstrates the benefits of high temperature synthesised mesoporous titania for the performance of solid-state DSCs. In contrast to earlier methods, the high temperature stability of mesoporous titania is enabled by the self-assembly of the amphiphilic block copolymer polyisoprene-block-polyethylene oxide (PI-b -PEO) which compartmentalises TiO2 crystallisation, preventing the collapse of porosity at temperatures up to 700 °C. The systematic study of the temperature dependence on DSC performance reveals a parameter trade-off: high temperature annealed anatase consisted of larger crystallites and had a higher conductivity, but this came at the expense of a reduced specific surface area. While the reduction in specific surface areas was found to be detrimental for liquid-electrolyte DSC performance, solid-state DSCs benefitted from the increased anatase conductivity and exhibited a performance increase by a factor of three.


Journal of the American Chemical Society | 2016

Solid Electrolyte Interphase Growth and Capacity Loss in Silicon Electrodes

Alison L. Michan; Giorgio Divitini; Andrew J. Pell; Michal Leskes; Caterina Ducati; Clare P. Grey

The solid electrolyte interphase (SEI) of the high capacity anode material Si is monitored over multiple electrochemical cycles by (7)Li, (19)F, and (13)C solid-state nuclear magnetic resonance spectroscopies, with the organics dominating the SEI. Homonuclear correlation experiments are used to identify the organic fragments -OCH2CH2O-, -OCH2CH2-, -OCH2CH3, and -CH2CH3 contained in both oligomeric species and lithium semicarbonates ROCO2Li, RCO2Li. The SEI growth is correlated with increasing electrode tortuosity by using focused ion beam and scanning electron microscopy. A two-stage model for lithiation capacity loss is developed: initially, the lithiation capacity steadily decreases, Li(+) is irreversibly consumed at a steady rate, and pronounced SEI growth is seen. Later, below 50% of the initial lithiation capacity, less Si is (de)lithiated resulting in less volume expansion and contraction; the rate of Li(+) being irreversibly consumed declines, and the Si SEI thickness stabilizes. The decreasing lithiation capacity is primarily attributed to kinetics, the increased electrode tortuousity severely limiting Li(+) ion diffusion through the bulk of the electrode. The resulting changes in the lithiation processes seen in the electrochemical capacity curves are ascribed to non-uniform lithiation, the reaction commencing near the separator/on the surface of the particles.


ACS Nano | 2013

Hyperbranched quasi-1D nanostructures for solid-state dye-sensitized solar cells.

Luca Passoni; Farbod Ghods; Pablo Docampo; Agnese Abrusci; Javier Martí-Rujas; Matteo Ghidelli; Giorgio Divitini; Caterina Ducati; Maddalena Binda; Simone Guarnera; Andrea Bassi; C. S. Casari; Henry J. Snaith; Annamaria Petrozza; Fabio Di Fonzo

In this work we demonstrate hyperbranched nanostructures, grown by pulsed laser deposition, composed of one-dimensional anatase single crystals assembled in arrays of high aspect ratio hierarchical mesostructures. The proposed growth mechanism relies on a two-step process: self-assembly from the gas phase of amorphous TiO2 clusters in a forest of tree-shaped hierarchical mesostructures with high aspect ratio; oriented crystallization of the branches upon thermal treatment. Structural and morphological characteristics can be optimized to achieve both high specific surface area for optimal dye uptake and broadband light scattering thanks to the microscopic feature size. Solid-state dye sensitized solar cells fabricated with arrays of hyperbranched TiO2 nanostructures on FTO-glass sensitized with D102 dye showed a significant 66% increase in efficiency with respect to a reference mesoporous photoanode and reached a maximum efficiency of 3.96% (among the highest reported for this system). This result was achieved mainly thanks to an increase in photogenerated current directly resulting from improved light harvesting efficiency of the hierarchical photoanode. The proposed photoanode overcomes typical limitations of 1D TiO2 nanostructures applied to ss-DSC and emerges as a promising foundation for next-generation high-efficiency solid-state devices comprosed of dyes, polymers, or quantum dots as sensitizers.


ACS Applied Materials & Interfaces | 2015

Interface and Composition Analysis on Perovskite Solar Cells

Fabio Matteocci; Yan Busby; Jean-Jacques Pireaux; Giorgio Divitini; Stefania Cacovich; Caterina Ducati; Aldo Di Carlo

Organometal halide (hybrid) perovskite solar cells have been fabricated following four different deposition procedures and investigated in order to find correlations between the solar cell characteristics/performance and their structure and composition as determined by combining depth-resolved imaging with time-of-flight secondary ion mass spectrometry (ToF-SIMS), X-ray photoelectron spectroscopy (XPS), and analytical scanning transmission electron microscopy (STEM). The interface quality is found to be strongly affected by the perovskite deposition procedure, and in particular from the environment where the conversion of the starting precursors into the final perovskite is performed (air, nitrogen, or vacuum). The conversion efficiency of the precursors into the hybrid perovskite layer is compared between the different solar cells by looking at the ToF-SIMS intensities of the characteristic molecular fragments from the perovskite and the precursor materials. Energy dispersive X-ray spectroscopy in the STEM confirms the macroscopic ToF-SIMS findings and allows elemental mapping with nanometer resolution. Clear evidence for iodine diffusion has been observed and related to the fabrication procedure.


Nature | 2018

Maximizing and stabilizing luminescence from halide perovskites with potassium passivation

Mojtaba Abdi-Jalebi; Zahra Andaji-Garmaroudi; Stefania Cacovich; Camille Stavrakas; Bertrand Philippe; Johannes M. Richter; Mejd Alsari; Edward P. Booker; Eline M. Hutter; Andrew J. Pearson; Samuele Lilliu; Tom J. Savenije; Håkan Rensmo; Giorgio Divitini; Caterina Ducati; Richard H. Friend; Samuel D. Stranks

Metal halide perovskites are of great interest for various high-performance optoelectronic applications. The ability to tune the perovskite bandgap continuously by modifying the chemical composition opens up applications for perovskites as coloured emitters, in building-integrated photovoltaics, and as components of tandem photovoltaics to increase the power conversion efficiency. Nevertheless, performance is limited by non-radiative losses, with luminescence yields in state-of-the-art perovskite solar cells still far from 100 per cent under standard solar illumination conditions. Furthermore, in mixed halide perovskite systems designed for continuous bandgap tunability (bandgaps of approximately 1.7 to 1.9 electronvolts), photoinduced ion segregation leads to bandgap instabilities. Here we demonstrate substantial mitigation of both non-radiative losses and photoinduced ion migration in perovskite films and interfaces by decorating the surfaces and grain boundaries with passivating potassium halide layers. We demonstrate external photoluminescence quantum yields of 66 per cent, which translate to internal yields that exceed 95 per cent. The high luminescence yields are achieved while maintaining high mobilities of more than 40 square centimetres per volt per second, providing the elusive combination of both high luminescence and excellent charge transport. When interfaced with electrodes in a solar cell device stack, the external luminescence yield—a quantity that must be maximized to obtain high efficiency—remains as high as 15 per cent, indicating very clean interfaces. We also demonstrate the inhibition of transient photoinduced ion-migration processes across a wide range of mixed halide perovskite bandgaps in materials that exhibit bandgap instabilities when unpassivated. We validate these results in fully operating solar cells. Our work represents an important advance in the construction of tunable metal halide perovskite films and interfaces that can approach the efficiency limits in tandem solar cells, coloured-light-emitting diodes and other optoelectronic applications.


Journal of Materials Chemistry | 2015

Quasi-1D hyperbranched WO3 nanostructures for low-voltage photoelectrochemical water splitting

Mehrdad Balandeh; Alessandro Mezzetti; Alessandra Tacca; Silvia Leonardi; Gianluigi Marra; Giorgio Divitini; Caterina Ducati; Laura Meda; Fabio Di Fonzo

Arrays of hyperbranched high aspect ratio mesostructures are grown by pulsed laser deposition through a self-assembly process from the gas phase. These hierarchical arrays are successfully used as photoanodes for the photoelectrochemical splitting of water, exhibiting an onset potential as low as 0.4 V vs. RHE and saturation current densities up to 1.85 mA cm−2 at 0.8 V vs. RHE. While the latter is similar to the state of the art values for WO3 nanostructured photoanodes, both the onset and saturation voltages are significantly lower than any other reported values. This peculiar behavior is attributed to the hyperbranched structure and to its excellent optical and electronic properties.


Nano Letters | 2013

Polymer Crystallization as a Tool To Pattern Hybrid Nanostructures: Growth of 12 nm ZnO Arrays in Poly(3-hexylthiophene)

Reza Saberi Moghaddam; Sven Huettner; Yana Vaynzof; Caterina Ducati; Giorgio Divitini; Ruth H. Lohwasser; Kevin P. Musselman; Alessandro Sepe; Maik R. J. Scherer; Mukundan Thelakkat; Ullrich Steiner; Richard H. Friend

Well-ordered hybrid materials with a 10 nm length scale are highly desired. We make use of the natural length scale (typically 10-15 nm) of the alternating crystalline and amorphous layers that are generally found in semicrystalline polymers to direct the growth of a semiconducting metal oxide. This approach is exemplified with the growth of ZnO within a carboxylic acid end-functionalized poly(3-hexylthiophene) (P3HT-COOH). The metal-oxide precursor vapors diffuse into the amorphous parts of the semicrystalline polymer so that sheets of ZnO up to 0.5 μm in size can be grown. This P3HT-ZnO nanostructure further functions as a donor-acceptor photovoltaic system, with length scales appropriate for charge photogeneration.

Collaboration


Dive into the Giorgio Divitini's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fabio Di Fonzo

Istituto Italiano di Tecnologia

View shared research outputs
Researchain Logo
Decentralizing Knowledge