Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giovanna Calabrese is active.

Publication


Featured researches published by Giovanna Calabrese.


PLOS ONE | 2016

Collagen-Hydroxyapatite Scaffolds Induce Human Adipose Derived Stem Cells Osteogenic Differentiation In Vitro.

Giovanna Calabrese; Claudia Fabbi; Elisa Figallo; Debora Lo Furno; Rosario Gulino; Cristina Colarossi; Francesco Fullone; Rosario Giuffrida; Rosalba Parenti; Lorenzo Memeo; Stefano Forte

Mesenchymal stem cells (MSCs) play a crucial role in regulating normal skeletal homeostasis and, in case of injury, in bone healing and reestablishment of skeletal integrity. Recent scientific literature is focused on the development of bone regeneration models where MSCs are combined with biomimetic three-dimensional scaffolds able to direct MSC osteogenesis. In this work the osteogenic potential of human MSCs isolated from adipose tissue (hADSCs) has been evaluated in vitro in combination with collagen/Mg doped hydroxyapatite scaffolds. Results demonstrate the high osteogenic potential of hADSCs when cultured in specific differentiation induction medium, as revealed by the Alizarin Red S staining and gene expression profile analysis. In combination with collagen/hydroxyapatite scaffold, hADSCs differentiate into mature osteoblasts even in the absence of specific inducing factors; nevertheless, the supplement of the factors markedly accelerates the osteogenic process, as confirmed by the expression of specific markers of pre-osteoblast and mature osteoblast stages, such as osterix, osteopontin (also known as bone sialoprotein I), osteocalcin and specific markers of extracellular matrix maturation and mineralization stages, such as ALPL and osteonectin. Hence, the present work demonstrates that the scaffold per se is able to induce hADSCs differentiation, while the addition of osteo-inductive factors produces a significant acceleration of the osteogenic process. This observation makes the use of our model potentially interesting in the field of regenerative medicine for the treatment of bone defects.


International Journal of Molecular Sciences | 2015

Potential Effect of CD271 on Human Mesenchymal Stromal Cell Proliferation and Differentiation

Giovanna Calabrese; Debora Lo Furno; Nunziatina Parrinello; Stefano Forte; Rosario Gulino; Cristina Colarossi; Luciana Schinocca; Rosario Giuffrida; Venera Cardile; Lorenzo Memeo

The Low-Affinity Nerve Growth Factor Receptor (LNGFR), also known as CD271, is a member of the tumor necrosis factor receptor superfamily. The CD271 cell surface marker defines a subset of multipotential mesenchymal stromal cells and may be used to isolate and enrich cells derived from bone marrow aspirate. In this study, we compare the proliferative and differentiation potentials of CD271+ and CD271− mesenchymal stromal cells. Mesenchymal stromal cells were isolated from bone marrow aspirate and adipose tissue by plastic adherence and positive selection. The proliferation and differentiation potentials of CD271+ and CD271− mesenchymal stromal cells were assessed by inducing osteogenic, adipogenic and chondrogenic in vitro differentiation. Compared to CD271+, CD271− mesenchymal stromal cells showed a lower proliferation rate and a decreased ability to give rise to osteocytes, adipocytes and chondrocytes. Furthermore, we observed that CD271+ mesenchymal stromal cells isolated from adipose tissue displayed a higher efficiency of proliferation and trilineage differentiation compared to CD271+ mesenchymal stromal cells isolated from bone marrow samples, although the CD271 expression levels were comparable. In conclusion, these data show that both the presence of CD271 antigen and the source of mesenchymal stromal cells represent important factors in determining the ability of the cells to proliferate and differentiate.


Theranostics | 2017

Interleukin 3- receptor targeted exosomes inhibit in vitro and in vivo chronic myelogenous Leukemia cell growth

Daniele Bellavia; Stefania Raimondo; Giovanna Calabrese; Stefano Forte; Marta Cristaldi; Agostina Patinella; Lorenzo Memeo; Mauro Manno; Samuele Raccosta; Patrizia Diana; Girolamo Cirrincione; Gianluca Giavaresi; Francesca Monteleone; Simona Fontana; Giacomo De Leo; Riccardo Alessandro

Despite Imatinib (IM), a selective inhibitor of Bcr-Abl, having led to improved prognosis in Chronic Myeloid Leukemia (CML) patients, acquired resistance and long-term adverse effects is still being encountered. There is, therefore, urgent need to develop alternative strategies to overcome drug resistance. According to the molecules expressed on their surface, exosomes can target specific cells. Exosomes can also be loaded with a variety of molecules, thereby acting as a vehicle for the delivery of therapeutic agents. In this study, we engineered HEK293T cells to express the exosomal protein Lamp2b, fused to a fragment of Interleukin 3 (IL3). The IL3 receptor (IL3-R) is overexpressed in CML blasts compared to normal hematopoietic cells and thus is able to act as a receptor target in a cancer drug delivery system. Here we show that IL3L exosomes, loaded with Imatinib or with BCR-ABL siRNA, are able to target CML cells and inhibit in vitro and in vivo cancer cell growth.


Scientific Reports | 2016

Bone augmentation after ectopic implantation of a cell-free collagen-hydroxyapatite scaffold in the mouse

Giovanna Calabrese; Stefano Forte; Lucia Salvatorelli; Claudia Fabbi; Elisa Figallo; Massimo Gulisano; Rosalba Parenti; Gaetano Magro; Cristina Colarossi; Lorenzo Memeo; Rosario Gulino

The bone grafting is the classical way to treat large bone defects. Among the available techniques, autologous bone grafting is still the most used but, however, it can cause complications such as infection and donor site morbidity. Alternative and innovative methods rely on the development of biomaterials mimicking the structure and properties of natural bone. In this study, we characterized a cell-free scaffold, which was subcutaneously implanted in mice and then analyzed both in vivo and ex vivo after 1, 2, 4, 8 and 16 weeks, respectively. Two types of biomaterials, made of either collagen alone or collagen plus magnesium-enriched hydroxyapatite have been used. The results indicate that bone augmentation and angiogenesis could spontaneously occur into the biomaterial, probably by the recruitment of host cells, and that the composition of the scaffolds is crucial. In particular, the biomaterial more closely mimicking the native bone drives the process of bone augmentation more efficiently. Gene expression analysis and immunohistochemistry demonstrate the expression of typical markers of osteogenesis by the host cells populating the scaffold. Our data suggest that this biomaterial could represent a promising tool for the reconstruction of large bone defects, without using exogenous living cells or growth factors.


Frontiers in Physiology | 2017

Combination of Collagen-Based Scaffold and Bioactive Factors Induces Adipose-Derived Mesenchymal Stem Cells Chondrogenic Differentiation In vitro

Giovanna Calabrese; Stefano Forte; Rosario Gulino; Francesco Cefalì; Elisa Figallo; Lucia Salvatorelli; Eugenia T. Maniscalchi; Giuseppe Angelico; Rosalba Parenti; Massimo Gulisano; Lorenzo Memeo

Recently, multipotent mesenchymal stem cells (MSCs) have attracted much attention in the field of regenerative medicine due to their ability to give rise to different cell types, including chondrocytes. Damaged articular cartilage repair is one of the most challenging issues for regenerative medicine, due to the intrinsic limited capability of cartilage to heal because of its avascular nature. While surgical approaches like chondral autografts and allografts provide symptoms and function improvement only for a short period, MSC based stimulation therapies, like microfracture surgery or autologous matrix-induced chondrogenesis demonstrate to be more effective. The use of adult chondrocytes, which are the main cellular constituent of cartilage, in medical practice, is indeed limited due to their instability in monolayer culture and difficulty to collect donor tissue (articular and nasal cartilage). The most recent cartilage engineering approaches combine cells, biomaterial scaffold and bioactive factors to promote functional tissue replacements. Many recent evidences demonstrate that scaffolds providing specific microenvironmental conditions can promote MSCs differentiation toward a functional phenotype. In the present work, the chondrogenic potential of a new Collagen I based 3D scaffold has been assessed in vitro, in combination with human adipose-derived MSCs which possess a higher chondrogenic potential compared to MSCs isolated from other tissues. Our data indicate that the scaffold was able to promote the early stages of chondrogenic commitment and that supplementation of specific soluble factors was able to induce the complete differentiation of MSCs in chondrocytes as demonstrated by the appearance of cartilage distinctive markers (Sox 9, Aggrecan, Matrilin-1, and Collagen II), as well as by the cartilage-specific Alcian Blue staining and by the acquisition of typical cellular morphology. Such evidences suggest that the investigated scaffold formulation could be suitable for the production of medical devices that can be beneficial in the field of articular cartilage engineering, thus improving the efficacy and durability of the current therapeutic options.


Experimental Cell Research | 2017

Engineered cartilage regeneration from adipose tissue derived-mesenchymal stem cells: A morphomolecular study on osteoblast, chondrocyte and apoptosis evaluation

Marta Anna Szychlinska; Paola Castrogiovanni; Houda Nsir; Michelino Di Rosa; Claudia Guglielmino; Rosalba Parenti; Giovanna Calabrese; Elisabetta Pricoco; Lucia Salvatorelli; Gaetano Magro; Rosa Imbesi; Ali Mobasheri; Giuseppe Musumeci

&NA; The poor self‐repair capacity of cartilage tissue in degenerative conditions, such as osteoarthritis (OA), has prompted the development of a variety of therapeutic approaches, such as cellular therapies and tissue engineering based on the use of mesenchymal stem cells (MSCs). The aim of this study is to demonstrate, for the first time, that the chondrocytes differentiated from rat adipose tissue derived‐MSCs (AMSCs), are able to constitute a morphologically and biochemically healthy hyaline cartilage after 6 weeks of culture on a Collagen Cell Carrier (CCC) scaffold. In this study we evaluated the expression of some osteoblasts (Runt‐related transcription factor 2 (RUNX2) and osteocalcin), chondrocytes (collagen I, II and lubricin) and apoptosis (caspase‐3) biomarkers in undifferentiated AMSCs, differentiated AMSCs in chondrocytes cultured in monolayer and AMSCs‐derived chondrocytes seeded on CCC scaffolds, by different techniques such as immunohistochemistry, ELISA, Western blot and gene expression analyses. Our results showed the increased expression of collagen II and lubricin in AMSCs‐derived chondrocytes cultured on CCC scaffolds, whereas the expression of collagen I, RUNX2, osteocalcin and caspase‐3 resulted decreased, when compared to the controls. In conclusion, this innovative basic study could be a possible key for future therapeutic strategies for articular cartilage restoration through the use of CCC scaffolds, to reduce the morbidity from acute cartilage injuries and degenerative joint diseases. Graphical abstract Figure. No caption available. HighlightsArticular cartilage has poor regenerative capacity.Use of MSCs for cartilage tissue regeneration is very promising.MSCs‐derived chondrocytes cultured on CCC constitute a healthy hyaline cartilage.RUNX2, osteocalcin, col (I, II), lubricin and caspase‐3 expression was assessed.


PLOS ONE | 2013

Gene expression analysis of PTEN positive glioblastoma stem cells identifies DUB3 and Wee1 modulation in a cell differentiation model

Stefano Forte; Alfredo Pagliuca; Eugenia T. Maniscalchi; Rosario Gulino; Giovanna Calabrese; Lucia Ricci-Vitiani; Roberto Pallini; Michele Signore; Rosalba Parenti; Ruggero De Maria; Massimo Gulisano

The term astrocytoma defines a quite heterogeneous group of neoplastic diseases that collectively represent the most frequent brain tumors in humans. Among them, glioblastoma multiforme represents the most malignant form and its associated prognosis is one of the poorest among tumors of the central nervous system. It has been demonstrated that a small population of tumor cells, isolated from the brain neoplastic tissue, can reproduce the parental tumor when transplanted in immunodeficient mouse. These tumor initiating cells are supposed to be involved in cancer development and progression and possess stem cell-like features; like their normal counterpart, these cells remain quiescent until they are committed to differentiation. Many studies have shown that the role of the tumor suppressor protein PTEN in cell cycle progression is fundamental for tumor dynamics: in low grade gliomas, PTEN contributes to maintain cells in G1 while the loss of its activity is frequently observed in high grade gliomas. The mechanisms underlying the above described PTEN activity have been studied in many tumors, but those involved in the maintenance of tumor initiating cells quiescence remain to be investigated in more detail. The aim of the present study is to shed light on the role of PTEN pathway on cell cycle regulation in Glioblastoma stem cells, through a cell differentiation model. Our results suggest the existence of a molecular mechanism, that involves DUB3 and WEE1 gene products in the regulation of Cdc25a, as functional effector of the PTEN/Akt pathway.


Scientific Reports | 2017

Human adipose-derived mesenchymal stem cells seeded into a collagen-hydroxyapatite scaffold promote bone augmentation after implantation in the mouse

Giovanna Calabrese; Stefano Forte; Claudia Fabbi; Elisa Figallo; Lucia Salvatorelli; Lorenzo Memeo; Rosalba Parenti; Massimo Gulisano; Rosario Gulino

Traumatic injury or surgical excision of diseased bone tissue usually require the reconstruction of large bone defects unable to heal spontaneously, especially in older individuals. This is a big challenge requiring the development of biomaterials mimicking the bone structure and capable of inducing the right commitment of cells seeded within the scaffold. In particular, given their properties and large availability, the human adipose-derived stem cells are considered as the better candidate for autologous cell transplantation. In order to evaluate the regenerative potential of these cells along with an osteoinductive biomaterial, we have used collagen/hydroxyapatite scaffolds to test ectopic bone formation after subcutaneous implantation in mice. The process was analysed both in vivo, by Fluorescent Molecular Tomography (FMT), and ex vivo, to evaluate the formation of bone and vascular structures. The results have shown that the biomaterial could itself be able of promoting differentiation of host cells and bone formation, probably by means of its intrinsic chemical and structural properties, namely the microenvironment. However, when charged with human mesenchymal stem cells, the ectopic bone formation within the scaffold was increased. We believe that these results represent an important advancement in the field of bone physiology, as well as in regenerative medicine.


Stem Cells International | 2016

Potential Role of Activating Transcription Factor 5 during Osteogenesis.

Luisa Vicari; Giovanna Calabrese; Stefano Forte; Cristina Colarossi; Nunziatina Parrinello; Lorenzo Memeo

Human adipose-derived stem cells are an abundant population of stem cells readily isolated from human adipose tissue that can differentiate into connective tissue lineages including bone, cartilage, fat, and muscle. Activating transcription factor 5 is a transcription factor of the ATF/cAMP response element-binding protein (CREB) family. It is transcribed in two types of mRNAs (activating transcription factor 5 isoform 1 and activating transcription factor 5 isoform 2), encoding the same single 30-kDa protein. Although it is well demonstrated that it regulates the proliferation, differentiation, and apoptosis, little is known about its potential role in osteogenic differentiation. The aim of this study was to evaluate the expression levels of the two isoforms and protein during osteogenic differentiation of human adipose-derived stem cells. Our data indicate that activating transcription factor 5 is differentially expressed reaching a peak of expression at the stage of bone mineralization. These findings suggest that activating transcription factor 5 could play an interesting regulatory role during osteogenesis, which would provide a powerful tool to study bone physiology.


Journal of Cellular and Molecular Medicine | 2017

Inhibition of Cx43 mediates protective effects on hypoxic/reoxygenated human neuroblastoma cells

Nunzio Vicario; Giovanna Calabrese; Agata Zappalà; Carmela Parenti; Stefano Forte; Adriana Carol Eleonora Graziano; Luca Vanella; Rosalia Pellitteri; Venera Cardile; Rosalba Parenti

Olfactory ensheathing cells (OECs), a special population of glial cells, are able to synthesise several trophic factors exerting a neuroprotective action and promoting growth and functional recovery in both in vitro and in vivo models. In the present work, we investigated the neuroprotective effects of OEC‐conditioned medium (OEC‐CM) on two different human neuron‐like cell lines, SH‐SY5Y and SK‐N‐SH (neuroblastoma cell lines), under normoxic and hypoxic conditions. In addition, we also focused our attention on the role of connexins (Cxs) in the neuroprotective processes. Our results confirmed OEC‐CM mediated neuroprotection as shown by cell adherence, proliferation and cellular viability analyses. Reduced connexin 43 (Cx43) levels in OEC‐CM compared to unconditioned cells in hypoxic conditions prompted us to investigate the role of Cx43‐Gap junctions (GJs) and Cx43‐hemichannels (HCs) in hypoxic/reoxygenation injury using carbenoxolone (non‐selective GJ inhibitor), ioxynil octanoato (selective Cx43‐GJ inhibitor) and Gap19 (selective Cx43‐HC inhibitor). We found that Cx43‐GJ and Cx43‐HC inhibitors are able to protect SH‐SY5Y and allow to these cultures to overcome the injury. Our findings support the hypothesis that both OEC‐CM and the inhibition of Cx43‐GJs and Cx43‐HCs offer a neuroprotective effect by reducing Cx43‐mediated cell‐to‐cell and cell‐to‐extracellular environment communications.

Collaboration


Dive into the Giovanna Calabrese's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge