Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lucia Salvatorelli is active.

Publication


Featured researches published by Lucia Salvatorelli.


Human Pathology | 2012

Mammary and vaginal myofibroblastomas are genetically related lesions: fluorescence in situ hybridization analysis shows deletion of 13q14 region

Gaetano Magro; Alberto Righi; Laura Casorzo; Torrisi Antonietta; Lucia Salvatorelli; Denisa Kacerovska; Dmitry V. Kazakov; Michal Michal

Partial monosomy 13q, a chromosomal alteration originally reported in spindle cell lipoma, has also been documented in a few cases of mammary myofibroblastoma. Subsequently, a monoallelic loss of RB1 and FOXO1, located on 13q14, was identified in some cases of cellular angiofibroma, a benign stromal tumor of the lower female genital tract. This cytogenetic finding and the overlapping morphologic and immunohistochemical features shared by spindle cell lipoma, mammary myofibroblastoma, and cellular angiofibroma strongly suggest a histogenetic link among these tumors. Recently, we have emphasized morphologic and immunohistochemical similarities between mammary and vulvovaginal myofibroblastoma. The aim of the present study was to asses if these 2 tumors share the same chromosomal alteration. We studied the chromosome 13q14 region by fluorescence in situ hybridization analysis in a series of mammary and vaginal myofibroblastomas, with a readable signal in 7 of 13 mammary myofibroblastomas and 5 of 7 cases of vaginal myofibroblastomas. Despite histologic variation, most of the mammary (5/7) and vaginal (3/5) myofibroblastomas showed monoallelic deletion of FOXO1 in more than 22% of the cell populations. Our findings confirm that mammary myofibroblastoma is a tumor that exhibits chromosome abnormalities associated with the loss of the 13q14 region. In addition, we show for the first time that myofibroblastoma of the lower female genital tract also exhibits the same chromosomal abnormality, supporting the hypothesis that both tumors are in the spectrum of a single entity, likely arising from a common precursor cell.


Acta Histochemica | 2015

Somitogenesis: From somite to skeletal muscle

Giuseppe Musumeci; Paola Castrogiovanni; Raymond Coleman; Marta Anna Szychlinska; Lucia Salvatorelli; Rosalba Parenti; Gaetano Magro; Rosa Imbesi

Myogenesis is controlled by an elaborate system of extrinsic and intrinsic regulatory mechanisms in all development stages. The aim of this review is to provide an overview of the different stages of myogenesis and muscle differentiation in mammals, starting from somitogenesis and analysis of the different portions that constitute the mature somite. Particular attention was paid to regulatory genes, in addition to mesodermal stem cells, which represent the earliest elements of myogenesis. Finally, the crucial role of growth factors, molecules of vital importance in contractile regulation, hormones and their function in skeletal muscle differentiation, growth and metabolism, and the role played by central nervous system, are discussed.


Scientific Reports | 2016

Bone augmentation after ectopic implantation of a cell-free collagen-hydroxyapatite scaffold in the mouse

Giovanna Calabrese; Stefano Forte; Lucia Salvatorelli; Claudia Fabbi; Elisa Figallo; Massimo Gulisano; Rosalba Parenti; Gaetano Magro; Cristina Colarossi; Lorenzo Memeo; Rosario Gulino

The bone grafting is the classical way to treat large bone defects. Among the available techniques, autologous bone grafting is still the most used but, however, it can cause complications such as infection and donor site morbidity. Alternative and innovative methods rely on the development of biomaterials mimicking the structure and properties of natural bone. In this study, we characterized a cell-free scaffold, which was subcutaneously implanted in mice and then analyzed both in vivo and ex vivo after 1, 2, 4, 8 and 16 weeks, respectively. Two types of biomaterials, made of either collagen alone or collagen plus magnesium-enriched hydroxyapatite have been used. The results indicate that bone augmentation and angiogenesis could spontaneously occur into the biomaterial, probably by the recruitment of host cells, and that the composition of the scaffolds is crucial. In particular, the biomaterial more closely mimicking the native bone drives the process of bone augmentation more efficiently. Gene expression analysis and immunohistochemistry demonstrate the expression of typical markers of osteogenesis by the host cells populating the scaffold. Our data suggest that this biomaterial could represent a promising tool for the reconstruction of large bone defects, without using exogenous living cells or growth factors.


Acta Histochemica | 2015

Wilms' tumor 1 (WT1) protein expression in human developing tissues.

Rosalba Parenti; Lucia Salvatorelli; Giuseppe Musumeci; Carmela Parenti; Alexandra Giorlandino; Fabio Motta; Gaetano Magro

Several genes playing crucial roles in human development often reproduce a key role also during the onset and progression of malignant tumors. WT1, a transcription factor expressed with a dynamic pattern during human development, has either oncogenic or suppressor tumor properties. A detailed analysis of the immunohistochemical profile of WT1 protein in human developmental tissues could be exploitable as the rational for better understanding its role in cancerogenesis and planning innovative WT1-based therapeutic approaches. This review focuses on the dynamic immunohistochemical expression and distribution of WT1 protein during human ontogenesis, providing illustrations and discussion on the most relevant findings. The possibility that WT1 nuclear/cytoplasmic expression in some tumors mirrors its normal developmental regulation will be emphasized.


Acta Histochemica | 2015

Mammary gland: From embryogenesis to adult life.

Giuseppe Musumeci; Paola Castrogiovanni; Marta Anna Szychlinska; Flavia Concetta Aiello; Giada Maria Vecchio; Lucia Salvatorelli; Gaetano Magro; Rosa Imbesi

The aim of this review is to focus on the molecular factors that ensure the optimal development and maintenance of the mammary gland thanks to their integration and coordination. The development of the mammary gland is supported, not only by endocrine signals, but also by regulatory molecules, which are able to integrate signals from the surrounding microenvironment. A major role is certainly played by homeotic genes, but their incorrect expression during the spatiotemporal regulation of proliferative, functional and differentiation cycles of the mammary gland, may result in the onset of neoplastic processes. Attention is directed also to the endocrine aspects and sexual dimorphism of mammary gland development, as well as the role played by ovarian steroids and their receptors in adult life.


Acta Histochemica | 2015

Cyclin D1 is a useful marker for soft tissue Ewing's sarcoma/peripheral Primitive Neuroectodermal Tumor in children and adolescents: A comparative immunohistochemical study with rhabdomyosarcoma

Gaetano Magro; Franca Brancato; Giuseppe Musumeci; Rita Alaggio; Rosalba Parenti; Lucia Salvatorelli

Cyclin D1 amplification and/or overexpression contribute to the loss of the regulatory circuits that govern G1-S transition phase of the cell cycle, playing pivotal roles in different human malignant tumors, including breast, colon, prostate cancer, lymphoma, melanoma and neuroblastoma. In vitro studies have shown that cyclin D1 is overexpressed in Ewings sarcoma (EWS)/peripheral Primitive Neuroectodermal Tumor (pPNET), but not in rhabdomyosarcoma cell lines. Only a few immunohistochemical studies are available on cyclin D1 expression in EWS/pPNET, which confirmed its expression only in a limited number of cases. The aim of the present study was a comparative immunohistochemical analysis of the expression and distribution of cyclin D1 in a large series of pediatric/adolescent soft tissue EWS/pPNETs and rhabdomyosarcomas (both embryonal and alveolar subtypes) to assess its potential usefulness in their differential diagnosis. Notably cyclin D1 was strongly and diffusely expressed in all cases (20/20) of EWS/pPNET, while it was lacked in all cases (15/15) of rhabdomyosarcomas. Immunohistochemical overexpression of cyclin D1 in EWS/pPNET is a novel finding which could be exploitable as a diagnostic immunomarker for this tumor. Although highly sensitive, cyclin D1 is not specific for EWS/pPNET, and thus it should not be evaluated alone but in the context of a wide immunohistochemical panel. Accordingly, we first emphasize that when pathologists are dealing with a small round blue cell tumor of soft tissues in pediatric/adolescent patients, a strong and diffuse nuclear expression of cyclin D1 is of complementary diagnostic value to CD99 and FLI-1 in confirming diagnosis of EWS/pPNET and in ruling out rhabdomyosarcoma.


Acta Histochemica | 2015

Wilms tumor 1 (WT1) protein: Diagnostic utility in pediatric tumors

Lucia Salvatorelli; Rosalba Parenti; Giorgia Leone; Giuseppe Musumeci; Enrico Vasquez; Gaetano Magro

Despite Wilms tumor 1 (WT1) protein was originally considered as a specific immunomarker of Wilms tumor, with the increasing use of immunohistochemistry, there is evidence that other tumors may share WT1 protein expression. This review focuses on the immunohistochemical profile of WT1 protein in the most common malignant tumors of children and adolescents. The variable expression and distribution patterns (nuclear vs cytoplasmic) in the different tumors, dependent on the antibodies used (anti-C or N-terminus WT1 protein), will be emphasized by providing explicative illustrations. Potential diagnostic pitfalls from unexpected WT1 protein expression in some tumors will be discussed in order to avoid diagnostic errors, especially when dealing with small biopsies.


Frontiers in Physiology | 2017

Combination of Collagen-Based Scaffold and Bioactive Factors Induces Adipose-Derived Mesenchymal Stem Cells Chondrogenic Differentiation In vitro

Giovanna Calabrese; Stefano Forte; Rosario Gulino; Francesco Cefalì; Elisa Figallo; Lucia Salvatorelli; Eugenia T. Maniscalchi; Giuseppe Angelico; Rosalba Parenti; Massimo Gulisano; Lorenzo Memeo

Recently, multipotent mesenchymal stem cells (MSCs) have attracted much attention in the field of regenerative medicine due to their ability to give rise to different cell types, including chondrocytes. Damaged articular cartilage repair is one of the most challenging issues for regenerative medicine, due to the intrinsic limited capability of cartilage to heal because of its avascular nature. While surgical approaches like chondral autografts and allografts provide symptoms and function improvement only for a short period, MSC based stimulation therapies, like microfracture surgery or autologous matrix-induced chondrogenesis demonstrate to be more effective. The use of adult chondrocytes, which are the main cellular constituent of cartilage, in medical practice, is indeed limited due to their instability in monolayer culture and difficulty to collect donor tissue (articular and nasal cartilage). The most recent cartilage engineering approaches combine cells, biomaterial scaffold and bioactive factors to promote functional tissue replacements. Many recent evidences demonstrate that scaffolds providing specific microenvironmental conditions can promote MSCs differentiation toward a functional phenotype. In the present work, the chondrogenic potential of a new Collagen I based 3D scaffold has been assessed in vitro, in combination with human adipose-derived MSCs which possess a higher chondrogenic potential compared to MSCs isolated from other tissues. Our data indicate that the scaffold was able to promote the early stages of chondrogenic commitment and that supplementation of specific soluble factors was able to induce the complete differentiation of MSCs in chondrocytes as demonstrated by the appearance of cartilage distinctive markers (Sox 9, Aggrecan, Matrilin-1, and Collagen II), as well as by the cartilage-specific Alcian Blue staining and by the acquisition of typical cellular morphology. Such evidences suggest that the investigated scaffold formulation could be suitable for the production of medical devices that can be beneficial in the field of articular cartilage engineering, thus improving the efficacy and durability of the current therapeutic options.


International Journal of Oncology | 2015

Expression profile of parkin isoforms in human gliomas

Grazia Maugeri; Agata Grazia D'Amico; Gaetano Magro; Lucia Salvatorelli; Giuseppe M.V. Barbagallo; Salvatore Saccone; Filippo Drago; Sebastiano Cavallaro; Velia D'Agata

Mutations of parkin gene are not restricted to familial forms of Parkinsonism but they also occur in a wide variety of malignancies including gliomas. Parkin over-expression reduces glioma cells proliferation and analysis of its expression is predictive for the survival outcome of patients with glioma. To date have been identified 21 parkin alternative splice variants. However, most of the studies have focused their attention exclusively on full-length protein. In the present study, the expression profile of parkin isoforms in different grades of astrocytomas was analyzed for the first time, in order to evaluate their involvement in this malignancy. Furthermore, to investigate their role in cellular processes, their expression in three glioblastoma cell lines was analyzed following treatment with the proteasome inhibitor MG132, or induction of mitophagy with CCCP, or after serum deprivation. Results suggested that H20, H1 and H5 isoforms are always expressed in tumors both in vivo and in vitro models. Therefore, these isoforms might be used as specific biomarkers to develop a prognostic tool for brain tumors.


Acta Histochemica | 2015

Cyclin D1 in human neuroblastic tumors recapitulates its developmental expression: An immunohistochemical study

Gaetano Magro; Lucia Salvatorelli; Andrea Di Cataldo; Giuseppe Musumeci; Graziana Spoto; Rosalba Parenti

The protein cyclin D1 (CD1), which belongs to a family of proteins functioning as regulators of CDKs (cyclin-dependent kinases) throughout the cell cycle, has been immunohistochemically detected in a wide variety of human malignant tumors. The aim of the present study was to investigate immunohistochemically the expression and distribution of CD1 in the developing human peripheral sympathetic nervous system (PSNS) and in childhood peripheral neuroblastic tumors (neuroblastomas, ganglioneuroblastomas, and ganglioneuromas). The above mentioned fetal and neoplastic tissues represent an in vivo model in which undifferentiated neuroblastic cells undergo ganglion cell differentiation. During development, a strong nuclear expression of CD1 was restricted to neuroblasts, disappearing progressively from the maturing ganglion cells with increasing gestational age. In neoplastic tissues, CD1 immunoreactivity was restricted to neuroblastic cell component of all neuroblastomas and ganglioneuroblastomas, whereas it was absent or only focally detectable in maturing/mature ganglion cell component of differentiating neuroblastomas, ganglioneuroblastomas, and ganglioneuromas. We conclude that CD1 is a reliable marker, which can be used routinely to stain neuroblastic cells in both developing and neoplastic tissues. Furthermore, our results indicate that CD1 expression in childhood peripheral neuroblastic tumors recapitulates the changes during normal development of PSNS, as previously reported for Bcl-2 oncoprotein, c-ErbB2, insulin-like growth factor 2, β-2-microglobulin, and cathepsin D. This is consistent with the current view that childhood peripheral neuroblastic tumors exhibit gene expression profiles mirroring those occurring during PSNS development.

Collaboration


Dive into the Lucia Salvatorelli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge