Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giovanna Distefano is active.

Publication


Featured researches published by Giovanna Distefano.


Journals of Gerontology Series A-biological Sciences and Medical Sciences | 2013

Skeletal Muscle Mitochondrial Energetics Are Associated With Maximal Aerobic Capacity and Walking Speed in Older Adults

Paul M. Coen; Sharon A. Jubrias; Giovanna Distefano; Francesca Amati; Dawn C. Mackey; Nancy W. Glynn; Todd M. Manini; Stephanie E. Wohlgemuth; Christiaan Leeuwenburgh; Steven R. Cummings; Anne B. Newman; Luigi Ferrucci; Frederico G.S. Toledo; Eric G. Shankland; Kevin E. Conley; Bret H. Goodpaster

BACKGROUND Lower ambulatory performance with aging may be related to a reduced oxidative capacity within skeletal muscle. This study examined the associations between skeletal muscle mitochondrial capacity and efficiency with walking performance in a group of older adults. METHODS Thirty-seven older adults (mean age 78 years; 21 men and 16 women) completed an aerobic capacity (VO2 peak) test and measurement of preferred walking speed over 400 m. Maximal coupled (State 3; St3) mitochondrial respiration was determined by high-resolution respirometry in saponin-permeabilized myofibers obtained from percutanous biopsies of vastus lateralis (n = 22). Maximal phosphorylation capacity (ATPmax) of vastus lateralis was determined in vivo by (31)P magnetic resonance spectroscopy (n = 30). Quadriceps contractile volume was determined by magnetic resonance imaging. Mitochondrial efficiency (max ATP production/max O2 consumption) was characterized using ATPmax per St3 respiration (ATPmax/St3). RESULTS In vitro St3 respiration was significantly correlated with in vivo ATPmax (r (2) = .47, p = .004). Total oxidative capacity of the quadriceps (St3*quadriceps contractile volume) was a determinant of VO2 peak (r (2) = .33, p = .006). ATPmax (r (2) = .158, p = .03) and VO2 peak (r (2) = .475, p < .0001) were correlated with preferred walking speed. Inclusion of both ATPmax/St3 and VO2 peak in a multiple linear regression model improved the prediction of preferred walking speed (r (2) = .647, p < .0001), suggesting that mitochondrial efficiency is an important determinant for preferred walking speed. CONCLUSIONS Lower mitochondrial capacity and efficiency were both associated with slower walking speed within a group of older participants with a wide range of function. In addition to aerobic capacity, lower mitochondrial capacity and efficiency likely play roles in slowing gait speed with age.


Diabetes | 2015

Exercise and Weight Loss Improve Muscle Mitochondrial Respiration, Lipid Partitioning, and Insulin Sensitivity After Gastric Bypass Surgery

Paul M. Coen; Elizabeth V. Menshikova; Giovanna Distefano; Donghai Zheng; Charles J. Tanner; Robert A. Standley; Nicole L. Helbling; Gabriel S. Dubis; Vladimir B. Ritov; Hui Xie; Marisa E. Desimone; Steven R. Smith; Maja Stefanovic-Racic; Frederico G.S. Toledo; Joseph A. Houmard; Bret H. Goodpaster

Both Roux-en-Y gastric bypass (RYGB) surgery and exercise can improve insulin sensitivity in individuals with severe obesity. However, the impact of RYGB with or without exercise on skeletal muscle mitochondria, intramyocellular lipids, and insulin sensitivity index (SI) is unknown. We conducted a randomized exercise trial in patients (n = 101) who underwent RYGB surgery and completed either a 6-month moderate exercise (EX) or a health education control (CON) intervention. SI was determined by intravenous glucose tolerance test. Mitochondrial respiration and intramyocellular triglyceride, sphingolipid, and diacylglycerol content were measured in vastus lateralis biopsy specimens. We found that EX provided additional improvements in SI and that only EX improved cardiorespiratory fitness, mitochondrial respiration and enzyme activities, and cardiolipin profile with no change in mitochondrial content. Muscle triglycerides were reduced in type I fibers in CON, and sphingolipids decreased in both groups, with EX showing a further reduction in a number of ceramide species. In conclusion, exercise superimposed on bariatric surgery–induced weight loss enhances mitochondrial respiration, induces cardiolipin remodeling, reduces specific sphingolipids, and provides additional improvements in insulin sensitivity.


Diabetes | 2013

Skeletal Muscle Triacylglycerol Hydrolysis Does Not Influence Metabolic Complications of Obesity

Mitch T. Sitnick; Mahesh K. Basantani; Lingzhi Cai; Gabriele Schoiswohl; Cynthia F. Yazbeck; Giovanna Distefano; Vladimir B. Ritov; James P. DeLany; Renate Schreiber; Donna B. Stolz; Noah P. Gardner; Petra C. Kienesberger; Thomas Pulinilkunnil; Rudolf Zechner; Bret H. Goodpaster; Paul M. Coen; Erin E. Kershaw

Intramyocellular triacylglycerol (IMTG) accumulation is highly associated with insulin resistance and metabolic complications of obesity (lipotoxicity), whereas comparable IMTG accumulation in endurance-trained athletes is associated with insulin sensitivity (the athlete’s paradox). Despite these findings, it remains unclear whether changes in IMTG accumulation and metabolism per se influence muscle-specific and systemic metabolic homeostasis and insulin responsiveness. By mediating the rate-limiting step in triacylglycerol hydrolysis, adipose triglyceride lipase (ATGL) has been proposed to influence the storage/production of deleterious as well as essential lipid metabolites. However, the physiological relevance of ATGL-mediated triacylglycerol hydrolysis in skeletal muscle remains unknown. To determine the contribution of IMTG hydrolysis to tissue-specific and systemic metabolic phenotypes in the context of obesity, we generated mice with targeted deletion or transgenic overexpression of ATGL exclusively in skeletal muscle. Despite dramatic changes in IMTG content on both chow and high-fat diets, modulation of ATGL-mediated IMTG hydrolysis did not significantly influence systemic energy, lipid, or glucose homeostasis, nor did it influence insulin responsiveness or mitochondrial function. These data argue against a role for altered IMTG accumulation and lipolysis in muscle insulin resistance and metabolic complications of obesity.


American Journal of Physiology-endocrinology and Metabolism | 2014

Effects of acute lipid overload on skeletal muscle insulin resistance, metabolic flexibility, and mitochondrial performance

John J. Dubé; Paul M. Coen; Giovanna Distefano; Alexander Chacon; Nicole L. Helbling; Marisa E. Desimone; Maja Stafanovic-Racic; Kazanna C. Hames; Alex A. Despines; Frederico G.S. Toledo; Bret H. Goodpaster

We hypothesized that acute lipid-induced insulin resistance would be attenuated in high-oxidative muscle of lean trained (LT) endurance athletes due to their enhanced metabolic flexibility and mitochondrial capacity. Lean sedentary (LS), obese sedentary (OS), and LT participants completed two hyperinsulinemic euglycemic clamp studies with and without (glycerol control) the coinfusion of Intralipid. Metabolic flexibility was measured by indirect calorimetry as the oxidation of fatty acids and glucose during fasted and insulin-stimulated conditions, the latter with and without lipid oversupply. Muscle biopsies were obtained for mitochondrial and insulin-signaling studies. During hyperinsulinemia without lipid, glucose infusion rate (GIR) was lowest in OS due to lower rates of nonoxidative glucose disposal (NOGD), whereas state 4 respiration was increased in all groups. Lipid infusion reduced GIR similarly in all subjects and reduced state 4 respiration. However, in LT subjects, fat oxidation was higher with lipid oversupply, and although glucose oxidation was reduced, NOGD was better preserved compared with LS and OS subjects. Mitochondrial performance was positively associated with better NOGD and insulin sensitivity in both conditions. We conclude that enhanced mitochondrial performance with exercise is related to better metabolic flexibility and insulin sensitivity in response to lipid overload.


PLOS ONE | 2013

Neuromuscular Electrical Stimulation as a Method to Maximize the Beneficial Effects of Muscle Stem Cells Transplanted into Dystrophic Skeletal Muscle

Giovanna Distefano; Ricardo Ferrari; Christopher Weiss; Bridget M. Deasy; Michael L. Boninger; G. Kelley Fitzgerald; Johnny Huard; Fabrisia Ambrosio

Cellular therapy is a potential approach to improve the regenerative capacity of damaged or diseased skeletal muscle. However, its clinical use has often been limited by impaired donor cell survival, proliferation and differentiation following transplantation. Additionally, functional improvements after transplantation are all-too-often negligible. Because the host microenvironment plays an important role in the fate of transplanted cells, methods to modulate the microenvironment and guide donor cell behavior are warranted. The purpose of this study was to investigate whether the use of neuromuscular electrical stimulation (NMES) for 1 or 4 weeks following muscle-derived stem cell (MDSC) transplantation into dystrophic skeletal muscle can modulate the fate of donor cells and enhance their contribution to muscle regeneration and functional improvements. Animals submitted to 4 weeks of NMES after transplantation demonstrated a 2-fold increase in the number of dystrophin+ myofibers as compared to control transplanted muscles. These findings were concomitant with an increased vascularity in the MDSC+NMES group when compared to non-stimulated counterparts. Additionally, animals subjected to NMES (with or without MDSC transplantation) presented an increased maximal specific tetanic force when compared to controls. Although cell transplantation and/or the use of NMES resulted in no changes in fatigue resistance, the combination of both MDSC transplantation and NMES resulted in a faster recovery from fatigue, when compared to non-injected and non-stimulated counterparts. We conclude that NMES is a viable method to improve MDSC engraftment, enhance dystrophic muscle strength, and, in combination with MDSC transplantation, improve recovery from fatigue. These findings suggest that NMES may be a clinically-relevant adjunct approach for cell transplantation into skeletal muscle.


The Journal of Clinical Endocrinology and Metabolism | 2014

Racial Differences In Peripheral Insulin Sensitivity and Mitochondrial Capacity in the Absence of Obesity

James P. DeLany; John J. Dubé; Robert A. Standley; Giovanna Distefano; Bret H. Goodpaster; Maja Stefanovic-Racic; Paul M. Coen; Frederico G.S. Toledo

CONTEXT African-American women (AAW) have an increased risk of developing type 2 diabetes compared with Caucasian women (CW). Lower insulin sensitivity has been reported in AAW, but the reasons for this racial difference and the contributions of liver versus skeletal muscle are incompletely understood. OBJECTIVE We tested the hypothesis that young, nonobese AAW manifest lower insulin sensitivity specific to skeletal muscle, not liver, and is accompanied by lower skeletal muscle mitochondrial oxidative capacity. PARTICIPANTS AND MAIN OUTCOME MEASURES Twenty-two nonobese (body mass index 22.7 ± 3.1 kg/m(2)) AAW and 22 matched CW (body mass index 22.7 ± 3.1 kg/m(2)) underwent characterization of body composition, objectively assessed habitual physical activity, and insulin sensitivity with euglycemic clamps and stable-isotope tracers. Skeletal muscle biopsies were performed for lipid content, fiber typing, and mitochondrial measurements. RESULTS Peripheral insulin sensitivity was 26% lower in AAW (P < .01), but hepatic insulin sensitivity was similar between groups. Physical activity levels were similar between groups. Lower insulin sensitivity in AAW was not explained by total or central adiposity. Skeletal muscle triglyceride content was similar, but mitochondrial content was lower in AAW. Mitochondrial respiration was 24% lower in AAW and correlated with skeletal muscle insulin sensitivity (r = 0.33, P < .05). CONCLUSION When compared with CW, AAW have similar hepatic insulin sensitivity but a muscle phenotype characterized by both lower insulin sensitivity and lower mitochondrial oxidative capacity. These observations occur in the absence of obesity and are not explained by physical activity. The only factor associated with lower insulin sensitivity in AAW was mitochondrial oxidative capacity. Because exercise training improves both mitochondrial capacity and insulin sensitivity, we suggest that it may be of particular benefit as a strategy for diabetes prevention in AAW.


Journals of Gerontology Series A-biological Sciences and Medical Sciences | 2016

Chronological Age Does not Influence Ex-vivo Mitochondrial Respiration and Quality Control in Skeletal Muscle

Giovanna Distefano; Robert A. Standley; John J. Dubé; Elvis A. Carnero; Vladimir B. Ritov; Maja Stefanovic-Racic; Frederico G.S. Toledo; Sara R. Piva; Bret H. Goodpaster; Paul M. Coen

Background Considerable debate continues to surround the concept of mitochondrial dysfunction in aging muscle. We tested the overall hypothesis that age per se does not influence mitochondrial function and markers of mitochondria quality control, that is, expression of fusion, fission, and autophagy proteins. We also investigated the influence of cardiorespiratory fitness (VO2max) and adiposity (body mass index) on these associations. Methods Percutaneous biopsies of the vastus lateralis were obtained from sedentary young (n = 14, 24±3 years), middle-aged (n = 24, 41±9 years) and older adults (n = 20, 78±5 years). A physically active group of young adults (n = 10, 27±5 years) was studied as a control. Mitochondrial respiration was determined in saponin permeabilized fiber bundles. Fusion, fission and autophagy protein expression was determined by Western blot. Cardiorespiratory fitness was determined by a graded exercise test. Results Mitochondrial respiratory capacity and expression of fusion (OPA1 and MFN2) and fission (FIS1) proteins were not different among sedentary groups despite a wide age range (21 to 88 years). Mitochondrial respiratory capacity and fusion and fission proteins were, however, negatively associated with body mass index, and mitochondrial respiratory capacity was positively associated with cardiorespiratory fitness. The young active group had higher respiration, complex I and II respiratory control ratios, and expression of fusion and fission proteins. Finally, the expression of fusion, fission, and autophagy proteins were linked with mitochondrial respiration. Conclusions Mitochondrial respiration and markers of mitochondrial dynamics (fusion and fission) are not associated with chronological age per se, but rather are more strongly associated with body mass index and cardiorespiratory fitness.


Free Radical Biology and Medicine | 2014

Arsenic induces sustained impairment of skeletal muscle and muscle progenitor cell ultrastructure and bioenergetics

Fabrisia Ambrosio; Elke H.P. Brown; Donna B. Stolz; Ricardo Ferrari; Bret H. Goodpaster; Bridget M. Deasy; Giovanna Distefano; Alexandra Roperti; Amin Cheikhi; Yesica Garciafigueroa; Aaron Barchowsky

Over 4 million individuals in the United States, and over 140 million individuals worldwide, are exposed daily to arsenic-contaminated drinking water. Human exposures can range from below the current limit of 10 μg/L to over 1mg/L, with 100 μg/L promoting disease in a large portion of those exposed. Although increased attention has recently been paid to myopathy following arsenic exposure, the pathogenic mechanisms underlying clinical symptoms remain poorly understood. This study tested the hypothesis that arsenic induces lasting muscle mitochondrial dysfunction and impairs metabolism. Compared to nonexposed controls, mice exposed to drinking water containing 100 μg/L arsenite for 5 weeks demonstrated impaired muscle function, mitochondrial myopathy, and altered oxygen consumption that were concomitant with increased mitochondrial fusion gene transcription. There were no differences in the levels of inorganic arsenic or its monomethyl and dimethyl metabolites between controls and exposed muscles, confirming that arsenic does not accumulate in muscle. Nevertheless, muscle progenitor cells isolated from exposed mice recapitulated the aberrant myofiber phenotype and were more resistant to oxidative stress, generated more reactive oxygen species, and displayed autophagic mitochondrial morphology, compared to cells isolated from nonexposed mice. These pathological changes from a possible maladaptive oxidative stress response provide insight into declines in muscle functioning caused by exposure to this common environmental contaminant.


Experimental Gerontology | 2017

Exercise increases mitochondrial complex I activity and DRP1 expression in the brains of aged mice

Aaron M. Gusdon; Jason Callio; Giovanna Distefano; Robert M. O'Doherty; Bret H. Goodpaster; Paul M. Coen; Charleen T. Chu

Abstract Exercise is known to have numerous beneficial effects. Recent studies indicate that exercise improves mitochondrial energetics not only in skeletal muscle but also in other tissues. While exercise elicits positive effects on memory, neurogenesis, and synaptic plasticity, the effects of exercise on brain mitochondrial energetics remain relatively unknown. Herein, we studied the effects of exercise training in old and young mice on brain mitochondrial energetics, in comparison to known effects on peripheral tissues that utilize fatty acid oxidation. Exercise improved the capacity for muscle and liver to oxidize palmitate in old mice, but not young mice. In the brain, exercise increased rates of respiration and reactive oxygen species (ROS) production in the old group only while utilizing complex I substrates, effects that were not seen in the young group. Coupled complex I to III enzymatic activity was significantly increased in old trained versus untrained mice with no effect on coupled II to III enzymatic activity. Mitochondrial protein content and markers of mitochondrial biogenesis (PGC‐1&agr; and TFAM) were not affected by exercise training in the brain, in contrast to the skeletal muscle of old mice. Brain levels of the autophagy marker LC3‐II and protein levels of other signaling proteins that regulate metabolism or transport (BDNF, HSP60, phosphorylated mTOR, FNDC5, SIRT3) were not significantly altered. Old exercised mice showed a significant increase in DRP1 protein levels in the brain without changes in phosphorylation, while MFN2 and OPA1 protein levels were unchanged. Our results suggest that exercise training in old mice can improve brain mitochondrial function through effects on electron transport chain function and mitochondrial dynamics without increasing mitochondrial biogenesis. HighlightsExercise training increased whole body oxygen consumption and fatty acid oxidation.Complex I–III coupled mitochondrial activity was decreased in the brains of old mice.Exercise increased complex I linked respiration and complex I–III coupled activity in old mice.Exercise training did not affect mitochondrial protein content or biogenesis in the brain.Expression of the fission protein DRP1 was increased in the brains of old exercised mice.


Obesity | 2015

Dose response of exercise training following roux-en-Y gastric bypass surgery: A randomized trial

Tracey L. Woodlief; Elvis A. Carnero; Robert A. Standley; Giovanna Distefano; Steve J. Anthony; Gabe S. Dubis; John M. Jakicic; Joseph A. Houmard; Paul M. Coen; Bret H. Goodpaster

Roux‐en‐Y gastric bypass (RYGB) surgery can cause profound weight loss and improve overall cardiometabolic risk factors. Exercise (EX) training following RYGB can provide additional improvements in insulin sensitivity (SI) and cardiorespiratory fitness. However, it remains unknown whether a specific amount of EX post‐RYGB is required to achieve additional benefits.

Collaboration


Dive into the Giovanna Distefano's collaboration.

Top Co-Authors

Avatar

Bret H. Goodpaster

Translational Research Institute

View shared research outputs
Top Co-Authors

Avatar

Paul M. Coen

Translational Research Institute

View shared research outputs
Top Co-Authors

Avatar

Robert A. Standley

Translational Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elvis A. Carnero

Translational Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John J. Dubé

University of Pittsburgh

View shared research outputs
Researchain Logo
Decentralizing Knowledge