Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul M. Coen is active.

Publication


Featured researches published by Paul M. Coen.


Diabetes | 2011

Skeletal Muscle Triglycerides, Diacylglycerols, and Ceramides in Insulin Resistance: Another Paradox in Endurance-Trained Athletes?

Francesca Amati; John J. Dubé; Elvis Alvarez-Carnero; Martin M. Edreira; Peter J. Chomentowski; Paul M. Coen; Galen E. Switzer; Perry E. Bickel; Maja Stefanovic-Racic; Frederico G.S. Toledo; Bret H. Goodpaster

OBJECTIVE Chronic exercise and obesity both increase intramyocellular triglycerides (IMTGs) despite having opposing effects on insulin sensitivity. We hypothesized that chronically exercise-trained muscle would be characterized by lower skeletal muscle diacylglycerols (DAGs) and ceramides despite higher IMTGs and would account for its higher insulin sensitivity. We also hypothesized that the expression of key skeletal muscle proteins involved in lipid droplet hydrolysis, DAG formation, and fatty-acid partitioning and oxidation would be associated with the lipotoxic phenotype. RESEARCH DESIGN AND METHODS A total of 14 normal-weight, endurance-trained athletes (NWA group) and 7 normal-weight sedentary (NWS group) and 21 obese sedentary (OBS group) volunteers were studied. Insulin sensitivity was assessed by glucose clamps. IMTGs, DAGs, ceramides, and protein expression were measured in muscle biopsies. RESULTS DAG content in the NWA group was approximately twofold higher than in the OBS group and ~50% higher than in the NWS group, corresponding to higher insulin sensitivity. While certain DAG moieties clearly were associated with better insulin sensitivity, other species were not. Ceramide content was higher in insulin-resistant obese muscle. The expression of OXPAT/perilipin-5, adipose triglyceride lipase, and stearoyl-CoA desaturase protein was higher in the NWA group, corresponding to a higher mitochondrial content, proportion of type 1 myocytes, IMTGs, DAGs, and insulin sensitivity. CONCLUSIONS Total myocellular DAGs were markedly higher in highly trained athletes, corresponding with higher insulin sensitivity, and suggest a more complex role for DAGs in insulin action. Our data also provide additional evidence in humans linking ceramides to insulin resistance. Finally, this study provides novel evidence supporting a role for specific skeletal muscle proteins involved in intramyocellular lipids, mitochondrial oxidative capacity, and insulin resistance.


Journal of Leukocyte Biology | 2008

Exercise training-induced lowering of inflammatory (CD14+CD16+) monocytes: a role in the anti-inflammatory influence of exercise?

Kyle L. Timmerman; Michael G. Flynn; Paul M. Coen; Melissa M. Markofski; Brandt D. Pence

Exercise training or higher levels of physical activity are known to exert anti‐inflammatory effects. CD14+CD16+ monocytes are potent producers of inflammatory proteins, and elevated levels of these “inflammatory” monocytes have been implicated in disease development. Little is known about the influence of exercise training on this cell population. On the basis of their physical activity pattern, male and female subjects, 65–80 years old, were assigned to a physically active (PA; n=15) or inactive (PI; n=15) group. The PI group performed 12 weeks (3 days/week) of endurance (20 min at 70–80% heart‐rate reserve) and resistance exercise training (eight exercises, two sets at 70–80% of one repetition maximum). Subjects in the PA group maintained their habitual activity level. Flow cytometry was used to determine monocyte phenotype and monocyte TLR4 expression. ELISAs were used to measure whole blood, LPS‐stimulated TNF‐α production, and serum C‐reactive protein (CRP). At baseline, the PA group had a lower percentage of CD14+CD16+ monocytes and lower unstimulated production of TNF‐α than the PI group. CD14+CD16+ monocyte percentage and 1 ng/ml LPS‐stimulated TNF‐α production were reduced after the PI group underwent 12 weeks of exercise training. PI subjects also had higher TLR4 expression on classical monocytes, but there were no significant exercise training‐induced changes in monocyte TLR4 expression. The PA group had significantly lower serum CRP than the PI group. Physical activity was associated with lower CD14+CD16+ monocyte percentage and LPS‐stimulated TNF‐α production. Exercise training‐induced reductions in CD14+CD16+ monocytes may contribute to the anti‐inflammatory effects of exercise training.


Diabetes | 2010

Insulin Resistance is Associated with Higher Intramyocellular Triglycerides in Type I but not Type II Myocytes Concomitant with Higher Ceramide Content

Paul M. Coen; John J. Dubé; Francesca Amati; Maja Stefanovic-Racic; Robert E. Ferrell; Frederico G.S. Toledo; Bret H. Goodpaster

OBJECTIVE We tested the primary hypotheses that sphingolipid and diacylglycerol (DAG) content is higher within insulin-resistant muscle and that the association between intramyocellular triglycerides (IMTG) and insulin resistance is muscle fiber type specific. RESEARCH DESIGN AND METHODS A nested case-control analysis was conducted in 22 obese (BMI >30 kg/m2) women who were classified as insulin-resistant (IR; n = 12) or insulin-sensitive (IS; n = 10), determined by hyperinsulinemic-euglycemic clamp (>30% greater in IS compared with IR, P < 0.01). Sphingolipid and DAG content was determined by high-performance liquid chromatography–tandem mass spectrometry. Fiber type–specific IMTG content was histologically determined. Gene expression was determined by quantitative PCR. RESULTS Total (555 ± 53 vs. 293 ± 54 pmol/mg protein, P = 0.004), saturated (361 ± 29 vs. 179 ± 34 pmol/mg protein, P = 0.001), and unsaturated (198 ± 29 vs. 114 ± 21 pmol/mg protein, P = 0.034) ceramides were higher in IR compared with IS. DAG concentrations, however, were similar. IMTG content within type I myocytes, but not type II myocytes, was higher in IR compared with IS subjects (P = 0.005). Insulin sensitivity was negatively correlated with IMTG within type I myocytes (R = −0.51, P = 0.026), but not with IMTG within type II myocytes. The proportion of type I myocytes was lower (41 vs. 59%, P < 0.01) in IR subjects. Several genes involved in lipid droplet and fatty acid metabolism were differentially expressed in IR compared with IS subjects. CONCLUSIONS Human skeletal muscle insulin resistance is related to greater IMTG content in type I but not type II myocytes, to greater ceramide content, and to alterations in gene expression associated with lipid metabolism.


Trends in Endocrinology and Metabolism | 2012

Role of intramyocelluar lipids in human health

Paul M. Coen; Bret H. Goodpaster

Intramyocellular lipid (IMCL) is predominantly stored as intramuscular triglyceride (IMTG) in lipid droplets and is utilized as metabolic fuel during physical exercise. IMTG is also implicated in muscle insulin resistance (IR) in type 2 diabetes. However, it has become apparent that lipid moieties such as ceramide and diacylglycerol are the likely culprits of IR. This article reviews current knowledge of IMCL-mediated IR and important areas of investigation, including myocellular lipid transport and lipid droplet proteins. Several crucial questions remain unanswered, such as the identity of specific ceramide and diacylglycerol species that mediate IR in human muscle and their subcellular location. Quantitative lipidomics and proteomics of targeted subcellular organelles will help to better define the mechanisms underlying pathological IMCL accumulation and IR.


Diabetes Care | 2009

Physical Inactivity and Obesity Underlie the Insulin Resistance of Aging

Francesca Amati; John J. Dubé; Paul M. Coen; Maja Stefanovic-Racic; Frederico G.S. Toledo; Bret H. Goodpaster

OBJECTIVE Age-associated insulin resistance may underlie the higher prevalence of type 2 diabetes in older adults. We examined a corollary hypothesis that obesity and level of chronic physical inactivity are the true causes for this ostensible effect of aging on insulin resistance. RESEARCH DESIGN AND METHODS We compared insulin sensitivity in 7 younger endurance-trained athletes, 12 older athletes, 11 younger normal-weight subjects, 10 older normal-weight subjects, 15 younger obese subjects, and 15 older obese subjects using a glucose clamp. The nonathletes were sedentary. RESULTS Insulin sensitivity was not different in younger endurance-trained athletes versus older athletes, in younger normal-weight subjects versus older normal-weight subjects, or in younger obese subjects versus older obese subjects. Regardless of age, athletes were more insulin sensitive than normal-weight sedentary subjects, who in turn were more insulin sensitive than obese subjects. CONCLUSIONS Insulin resistance may not be characteristic of aging but rather associated with obesity and physical inactivity.


Journals of Gerontology Series A-biological Sciences and Medical Sciences | 2013

Skeletal Muscle Mitochondrial Energetics Are Associated With Maximal Aerobic Capacity and Walking Speed in Older Adults

Paul M. Coen; Sharon A. Jubrias; Giovanna Distefano; Francesca Amati; Dawn C. Mackey; Nancy W. Glynn; Todd M. Manini; Stephanie E. Wohlgemuth; Christiaan Leeuwenburgh; Steven R. Cummings; Anne B. Newman; Luigi Ferrucci; Frederico G.S. Toledo; Eric G. Shankland; Kevin E. Conley; Bret H. Goodpaster

BACKGROUND Lower ambulatory performance with aging may be related to a reduced oxidative capacity within skeletal muscle. This study examined the associations between skeletal muscle mitochondrial capacity and efficiency with walking performance in a group of older adults. METHODS Thirty-seven older adults (mean age 78 years; 21 men and 16 women) completed an aerobic capacity (VO2 peak) test and measurement of preferred walking speed over 400 m. Maximal coupled (State 3; St3) mitochondrial respiration was determined by high-resolution respirometry in saponin-permeabilized myofibers obtained from percutanous biopsies of vastus lateralis (n = 22). Maximal phosphorylation capacity (ATPmax) of vastus lateralis was determined in vivo by (31)P magnetic resonance spectroscopy (n = 30). Quadriceps contractile volume was determined by magnetic resonance imaging. Mitochondrial efficiency (max ATP production/max O2 consumption) was characterized using ATPmax per St3 respiration (ATPmax/St3). RESULTS In vitro St3 respiration was significantly correlated with in vivo ATPmax (r (2) = .47, p = .004). Total oxidative capacity of the quadriceps (St3*quadriceps contractile volume) was a determinant of VO2 peak (r (2) = .33, p = .006). ATPmax (r (2) = .158, p = .03) and VO2 peak (r (2) = .475, p < .0001) were correlated with preferred walking speed. Inclusion of both ATPmax/St3 and VO2 peak in a multiple linear regression model improved the prediction of preferred walking speed (r (2) = .647, p < .0001), suggesting that mitochondrial efficiency is an important determinant for preferred walking speed. CONCLUSIONS Lower mitochondrial capacity and efficiency were both associated with slower walking speed within a group of older participants with a wide range of function. In addition to aerobic capacity, lower mitochondrial capacity and efficiency likely play roles in slowing gait speed with age.


The Journal of Clinical Endocrinology and Metabolism | 2011

Skeletal muscle mitochondria in insulin resistance: differences in intermyofibrillar versus subsarcolemmal subpopulations and relationship to metabolic flexibility.

Peter J. Chomentowski; Paul M. Coen; Zofia Radiková; Bret H. Goodpaster; Frederico G.S. Toledo

CONTEXT Insulin resistance is accompanied by lower lipid oxidation during fasting and metabolic inflexibility. Whether these abnormalities correlate with mitochondrial content in skeletal muscle is unknown. OBJECTIVE The objective of the study was to investigate whether decreased fasting lipid oxidation, metabolic inflexibility, and impaired glucose disposal correlate with reduced mitochondrial content in intermyofibrillar vs. subsarcolemmal (SS) subpopulations. DESIGN Forty sedentary adults with a wide spectrum of insulin sensitivity were studied: insulin-sensitive lean subjects, insulin-resistant nondiabetic subjects, and subjects with type 2 diabetes mellitus. Glucose disposal was measured by euglycemic clamp and [6,6-D(2)]-glucose methodology. Fuel oxidation and metabolic flexibility (during clamps) were assessed by indirect calorimetry. Maximum aerobic capacity was assessed by treadmill testing. Intermyofibrillar and SS mitochondrial content were measured by quantitative electron microscopy of muscle biopsy samples. RESULTS Intermyofibrillar mitochondrial content was lower in the insulin-resistant nondiabetic subjects and type 2 diabetes mellitus groups, significantly correlating with glucose disposal in both men (R = 0.72, P < 0.01) and women (R = 0.53, P < 0.01). In contrast, SS mitochondrial content was similar among groups. Lower intermyofibrillar mitochondrial content was not explained by mitochondrial size, altered fiber-type distribution, or differences in maximum aerobic capacity. Intermyofibrillar mitochondrial content was significantly correlated with fasting respiratory quotient (R = -0.46, P = 0.003) and metabolic flexibility (R = 0.38, P = 0.02). CONCLUSIONS In obese-insulin-resistant subjects with or without diabetes, intermyofibrillar mitochondrial content is decreased. This is not entirely explained by fitness status or fiber-type composition. SS mitochondrial content is unaffected, suggesting independent mitochondrial pool regulation. Lower mitochondrial content correlates with lower fasting lipid oxidation and metabolic inflexibility, suggesting it may be intrinsically linked to abnormal fuel utilization patterns of obesity-associated insulin resistance.


Diabetes | 2015

Exercise and Weight Loss Improve Muscle Mitochondrial Respiration, Lipid Partitioning, and Insulin Sensitivity After Gastric Bypass Surgery

Paul M. Coen; Elizabeth V. Menshikova; Giovanna Distefano; Donghai Zheng; Charles J. Tanner; Robert A. Standley; Nicole L. Helbling; Gabriel S. Dubis; Vladimir B. Ritov; Hui Xie; Marisa E. Desimone; Steven R. Smith; Maja Stefanovic-Racic; Frederico G.S. Toledo; Joseph A. Houmard; Bret H. Goodpaster

Both Roux-en-Y gastric bypass (RYGB) surgery and exercise can improve insulin sensitivity in individuals with severe obesity. However, the impact of RYGB with or without exercise on skeletal muscle mitochondria, intramyocellular lipids, and insulin sensitivity index (SI) is unknown. We conducted a randomized exercise trial in patients (n = 101) who underwent RYGB surgery and completed either a 6-month moderate exercise (EX) or a health education control (CON) intervention. SI was determined by intravenous glucose tolerance test. Mitochondrial respiration and intramyocellular triglyceride, sphingolipid, and diacylglycerol content were measured in vastus lateralis biopsy specimens. We found that EX provided additional improvements in SI and that only EX improved cardiorespiratory fitness, mitochondrial respiration and enzyme activities, and cardiolipin profile with no change in mitochondrial content. Muscle triglycerides were reduced in type I fibers in CON, and sphingolipids decreased in both groups, with EX showing a further reduction in a number of ceramide species. In conclusion, exercise superimposed on bariatric surgery–induced weight loss enhances mitochondrial respiration, induces cardiolipin remodeling, reduces specific sphingolipids, and provides additional improvements in insulin sensitivity.


Obesity | 2013

Reduced skeletal muscle oxidative capacity and elevated ceramide but not diacylglycerol content in severe obesity

Paul M. Coen; Kazanna C. Hames; E.M. Leachman; James P. DeLany; Vladimir B. Ritov; Elizaveta V. Menshikova; John J. Dubé; Maja Stefanovic-Racic; Frederico G.S. Toledo; Bret H. Goodpaster

The link between a reduced capacity for skeletal muscle mitochondrial fatty acid oxidation (FAO) and lipotoxicity in human insulin resistance has been the subject of intense debate. The objective of this study was to investigate whether reduced FAO is associated with elevated acyl CoA, ceramide, and diacylglycerol (DAG) in severely obese insulin resistant subjects.


Journal of Clinical Investigation | 2015

Clinical trial demonstrates exercise following bariatric surgery improves insulin sensitivity

Paul M. Coen; Charles J. Tanner; Nicole L. Helbling; Gabriel S. Dubis; Kazanna C. Hames; Hui Xie; George M. Eid; Maja Stefanovic-Racic; Frederico G.S. Toledo; John M. Jakicic; Joseph A. Houmard; Bret H. Goodpaster

BACKGROUND Roux-en-Y gastric bypass (RYGB) surgery causes profound weight loss and improves insulin sensitivity (S(I)) in obese patients. Regular exercise can also improve S(I) in obese individuals; however, it is unknown whether exercise and RYGB surgery-induced weight loss would additively improve S(I) and other cardiometabolic factors. METHODS We conducted a single-blind, prospective, randomized trial with 128 men and women who recently underwent RYGB surgery (within 1-3 months). Participants were randomized to either a 6-month semi-supervised moderate exercise protocol (EX, n = 66) or a health education control (CON; n = 62) intervention. Main outcomes measured included S(I) and glucose effectiveness (S(G)), which were determined from an intravenous glucose tolerance test and minimal modeling. Secondary outcomes measured were cardiorespiratory fitness (VO2 peak) and body composition. Data were analyzed using an intention-to-treat (ITT) and per-protocol (PP) approach to assess the efficacy of the exercise intervention (>120 min of exercise/week). RESULTS 119 (93%) participants completed the interventions, 95% for CON and 91% for EX. There was a significant decrease in body weight and fat mass for both groups (P < 0.001 for time effect). S(I) improved in both groups following the intervention (ITT: CON vs. EX; +1.64 vs. +2.24 min⁻¹/μU/ml, P = 0.18 for Δ, P < 0.001 for time effect). A PP analysis revealed that exercise produced an additive S(I) improvement (PP: CON vs. EX; +1.57 vs. +2.69 min⁻¹/μU/ml, P = 0.019) above that of surgery. Exercise also improved S(G) (ITT: CON vs. EX; +0.0023 vs. +0.0063 min⁻¹, P = 0.009) compared with the CON group. Exercise improved cardiorespiratory fitness (VO2 peak) compared with the CON group. CONCLUSION Moderate exercise following RYGB surgery provides additional improvements in S(I), S(G), and cardiorespiratory fitness compared with a sedentary lifestyle during similar weight loss. TRIAL REGISTRATION clinicaltrials.gov identifier: NCT00692367. FUNDING This study was funded by the NIH/National Institute of Diabetes and Digestive and Kidney Diseases (R01 DK078192) and an NIH/National Center for Research Resources/Clinical and Translational Science Award (UL1 RR024153).

Collaboration


Dive into the Paul M. Coen's collaboration.

Top Co-Authors

Avatar

Bret H. Goodpaster

Translational Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John J. Dubé

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Kyle L. Timmerman

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert A. Standley

Translational Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Melissa M. Markofski

University of Texas Medical Branch

View shared research outputs
Researchain Logo
Decentralizing Knowledge