Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giovanna Giuseppina Altobelli is active.

Publication


Featured researches published by Giovanna Giuseppina Altobelli.


Circulation Research | 2005

Ischemic Neoangiogenesis Enhanced by β2-Adrenergic Receptor Overexpression: A Novel Role for the Endothelial Adrenergic System

Guido Iaccarino; Michele Ciccarelli; Daniela Sorriento; Gennaro Galasso; Alfonso Campanile; Gaetano Santulli; Ersilia Cipolletta; Vincenzo Cerullo; Vincenzo Cimini; Giovanna Giuseppina Altobelli; Federico Piscione; Ornella Priante; Lucio Pastore; Massimo Chiariello; F. Salvatore; Walter J. Koch; Bruno Trimarco

&bgr;2-Adrenergic receptors (&bgr;2ARs) are widely expressed, although their physiological relevance in many tissues is not yet fully understood. In vascular endothelial cells, they regulate NO release and vessel tone. Here we provide novel evidence that &bgr;2ARs can regulate neoangiogenesis in response to chronic ischemia. We used in vivo adenoviral-mediated gene transfer of the human &bgr;2AR to the endothelium of the rat femoral artery and increased &bgr;2AR signaling resulting in ameliorated angiographic blood flow and hindlimb perfusion after chronic ischemia. Histological analysis confirmed that &bgr;2AR overexpression also produced benefits on capillary density. The same maneuver partially rescued impaired angiogenesis in spontaneously hypertensive rats (SHR), whereas gene delivery of the G-protein–coupling defective mutant Ile164 &bgr;2AR failed to provide ameliorations. Stimulation of endogenous and overexpressed &bgr;2AR on endothelial cells in vitro was found to regulate cell number by inducing proliferation and [3H]-thymidine incorporation through means of extracellular receptor-activated kinase and vascular endothelial growth factor. The &bgr;2AR also has novel effects on endothelial cell number through stimulation of proapoptosis and antiapoptosis pathways involving p38 mitogen-activated protein kinase and PI3-kinase/Akt activation. Therefore, &bgr;2ARs play a critical role in endothelial cell proliferation and function including revascularization, suggesting a novel and physiologically relevant role in neoangiogenesis in response to ischemia.


Proceedings of the National Academy of Sciences of the United States of America | 2008

The G-protein-coupled receptor kinase 5 inhibits NFkappaB transcriptional activity by inducing nuclear accumulation of IkappaB alpha.

Daniela Sorriento; Michele Ciccarelli; Gaetano Santulli; Alfonso Campanile; Giovanna Giuseppina Altobelli; Vincenzo Cimini; Gennaro Galasso; Dalila Astone; Federico Piscione; Lucio Pastore; Bruno Trimarco; Guido Iaccarino

G-protein-coupled receptor (GPCR) kinases, GRKs, are known as serine/threonine kinases that regulate GPCR signaling, but recent findings propose functions for these kinases besides receptor desensitization. Indeed, GRK5 can translocate to the nucleus by means of a nuclear localization sequence, suggesting that this kinase regulates transcription events in the nucleus. To evaluate the effect of GRK5–IκBα interaction on NFκB signaling, we induced the overexpression and the knockdown of GRK5 in cell cultures. GRK5 overexpression causes nuclear accumulation of IκBα, leading to the inhibition of NFκB transcriptional activity. Opposite results are achieved by GRK5 knockdown through siRNA. A physical interaction between GRK5 and IκBα, rather than phosphorylative events, appears as the underlying mechanism. We identify the regulator of gene protein signaling homology domain of GRK5 (RH) and the N-terminal domain of IκBα as the regions involved in such interaction. To confirm the biological relevance of this mechanism of regulation for NFκB, we evaluated the effects of GRK5-RH on NFκB-dependent phenotypes. In particular, GRK5-RH overexpression impairs apoptosis protection and cytokine production in vitro and inflammation and tissue regeneration in vivo. Our results reveal an unexpected role for GRK5 in the regulation of NFκB transcription activity. Placing these findings in perspective, this mechanism may represent a therapeutic target for all those conditions involving excessive NFκB activity.


Journal of Translational Medicine | 2009

In vivo properties of the proangiogenic peptide QK

Gaetano Santulli; Michele Ciccarelli; Gianluigi Palumbo; Alfonso Campanile; Gennaro Galasso; Barbara Ziaco; Giovanna Giuseppina Altobelli; Vincenzo Cimini; Federico Piscione; Luca Domenico D'Andrea; Carlo Pedone; Bruno Trimarco; Guido Iaccarino

The main regulator of neovascularization is Vascular Endothelial Growth Factor (VEGF). We recently demonstrated that QK, a de novo engineered VEGF mimicking peptide, shares in vitro the same biological properties of VEGF, inducing capillary formation and organization. On these grounds, the aim of this study is to evaluate in vivo the effects of this small peptide. Therefore, on Wistar Kyoto rats, we evaluated vasomotor responses to VEGF and QK in common carotid rings. Also, we assessed the effects of QK in three different models of angiogenesis: ischemic hindlimb, wound healing and Matrigel plugs. QK and VEGF present similar endothelium-dependent vasodilatation. Moreover, the ability of QK to induce neovascularization was confirmed us by digital angiographies, dyed beads dilution and histological analysis in the ischemic hindlimb as well as by histology in wounds and Matrigel plugs. Our findings show the proangiogenic properties of QK, suggesting that also in vivo this peptide resembles the full VEGF protein. These data open to new fields of investigation on the mechanisms of activation of VEGF receptors, offering clinical implications for treatment of pathophysiological conditions such as chronic ischemia.


British Journal of Pharmacology | 2009

Endothelial α1-adrenoceptors regulate neo-angiogenesis

Michele Ciccarelli; Gaetano Santulli; Alfonso Campanile; Gennaro Galasso; P Cervèro; Giovanna Giuseppina Altobelli; Vincenzo Cimini; L Pastore; Federico Piscione; Bruno Trimarco; Guido Iaccarino

Intact endothelium plays a pivotal role in post‐ischaemic angiogenesis. It is a phenomenon finely tuned by activation and inhibition of several endothelial receptors. The presence of α1‐adrenoceptors on the endothelium suggests that these receptors may participate in regenerative phenomena by regulating the responses of endothelial cells involved in neo‐angiogenesis.


Journal of the American Heart Association | 2013

Genetic Deletion of Uncoupling Protein 3 Exaggerates Apoptotic Cell Death in the Ischemic Heart Leading to Heart Failure

Cinzia Perrino; Gabriele Giacomo Schiattarella; Anna Sannino; Gianluigi Pironti; Maria Piera Petretta; Alessandro Cannavo; Giuseppe Gargiulo; Federica Ilardi; Fabio Magliulo; Anna Franzone; Giuseppe Carotenuto; Federica Serino; Giovanna Giuseppina Altobelli; Vincenzo Cimini; Alberto Cuocolo; Assunta Lombardi; Fernando Goglia; Ciro Indolfi; Bruno Trimarco; Giovanni Esposito

Background Uncoupling protein 3 (ucp3) is a member of the mitochondrial anion carrier superfamily of proteins uncoupling mitochondrial respiration. In this study, we investigated the effects of ucp3 genetic deletion on mitochondrial function and cell survival under low oxygen conditions in vitro and in vivo. Methods and Results To test the effects of ucp3 deletion in vitro, murine embryonic fibroblasts and adult cardiomyocytes were isolated from wild‐type (WT, n=67) and ucp3 knockout mice (ucp3−/−, n=70). To test the effects of ucp3 genetic deletion in vivo, myocardial infarction (MI) was induced by permanent coronary artery ligation in WT and ucp3−/− mice. Compared with WT, ucp3−/− murine embryonic fibroblasts and cardiomyocytes exhibited mitochondrial dysfunction and increased mitochondrial reactive oxygen species generation and apoptotic cell death under hypoxic conditions in vitro (terminal deoxynucleotidyl transferase‐dUTP nick end labeling–positive nuclei: WT hypoxia, 70.3±1.2%; ucp3−/− hypoxia, 85.3±0.9%; P<0.05). After MI, despite similar areas at risk in the 2 groups, ucp3−/− hearts demonstrated a significantly larger infarct size compared with WT (infarct area/area at risk: WT, 48.2±3.7%; ucp3−/−, 65.0±2.9%; P<0.05). Eight weeks after MI, cardiac function was significantly decreased in ucp3−/− mice compared with WT (fractional shortening: WT MI, 42.7±3.1%; ucp3−/− MI, 24.4±2.9; P<0.05), and this was associated with heightened apoptotic cell death (terminal deoxynucleotidyl transferase‐dUTP nick end labeling–positive nuclei: WT MI, 0.7±0.04%; ucp3−/− MI, 1.1±0.09%, P<0.05). Conclusions Our data indicate that ucp3 levels regulate reactive oxygen species levels and cell survival during hypoxia, modulating infarct size in the ischemic heart.


Haematologica | 2011

LMO2 expression reflects the different stages of blast maturation and genetic features in B-cell acute lymphoblastic leukemia and predicts clinical outcome

Raquel Malumbres; Vicente Fresquet; Jose Roman-Gomez; Miriam Bobadilla; Eloy F. Robles; Giovanna Giuseppina Altobelli; M. Jose Calasanz; Erlend B. Smeland; María Ángela Aznar; Xabier Agirre; Vanesa Martín-Palanco; Felipe Prosper; Izidore S. Lossos; Jose A. Martinez-Climent

Background LMO2 is highly expressed at the most immature stages of lymphopoiesis. In T-lymphocytes, aberrant LMO2 expression beyond those stages leads to T-cell acute lymphoblastic leukemia, while in B cells LMO2 is also expressed in germinal center lymphocytes and diffuse large B-cell lymphomas, where it predicts better clinical outcome. The implication of LMO2 in B-cell acute lymphoblastic leukemia must still be explored. Design and Methods We measured LMO2 expression by real time RT-PCR in 247 acute lymphoblastic leukemia patient samples with cytogenetic data (144 of them also with survival and immunophenotypical data) and in normal hematopoietic and lymphoid cells. Results B-cell acute lymphoblastic leukemia cases expressed variable levels of LMO2 depending on immunophenotypical and cytogenetic features. Thus, the most immature subtype, pro-B cells, displayed three-fold higher LMO2 expression than pre-B cells, common-CD10+ or mature subtypes. Additionally, cases with TEL-AML1 or MLL rearrangements exhibited two-fold higher LMO2 expression compared to cases with BCR-ABL rearrangements or hyperdyploid karyotype. Clinically, high LMO2 expression correlated with better overall survival in adult patients (5-year survival rate 64.8% (42.5%–87.1%) vs. 25.8% (10.9%–40.7%), P= 0.001) and constituted a favorable independent prognostic factor in B-ALL with normal karyotype: 5-year survival rate 80.3% (66.4%–94.2%) vs. 63.0% (46.1%–79.9%) (P= 0.043). Conclusions Our data indicate that LMO2 expression depends on the molecular features and the differentiation stage of B-cell acute lymphoblastic leukemia cells. Furthermore, assessment of LMO2 expression in adult patients with a normal karyotype, a group which lacks molecular prognostic factors, could be of clinical relevance.


Brain Research | 2015

Analysis of calretinin early expression in the rat hippocampus after beta amyloid (1–42) peptide injection

Giovanna Giuseppina Altobelli; Donatella Cimini; Giuseppe Esposito; Teresa Iuvone; Vincenzo Cimini

It has already been reported that cannabinoids are neuroprotective agents against excitotoxicity in vitro and increase after acute brain damage in vivo. This background prompted us to study the localization and expression of the calcium -binding protein calretinin in a condition similar to Alzheimer disease and its possible relationship with cannabinoids and their supposed protective role. We carried out quantitative analysis of the transient changes in calretinin expression shown by hybridochemistry within neuronal cell populations in the hippocampus of a beta amyloid-treated rat model of Alzheimers disease and their correlation with endocannabinoid increase. Calretinin expression increases throughout the first week after cortical amyloid-beta peptide injection, and then decreases towards normal levels in the rat hippocampus during the following weeks, indicating that decreased calretinin gene expression may be associated with either increase of endocannabinoids or VDM11-induced accumulation of endocannabinoids. In contrast, SR1, an antagonist, which limits the cannabinoid effect by selective binding to the cannabinoid receptor CB1, up-regulates calretinin expression with respect to non-treated rats. This could mean that the SR1 endocannabinoid-blocking action through CB1 receptors, that are normally stimulated by endocannabinoids to inhibit calcium increase, might cause a higher calretinin expression. This would allow us to speculate on a possible reverse relationship between endocannabinoid and calretinin levels in the hippocampal calcium-homeostasis balance.


Brain Research | 2007

Calretinin distribution in the octopus brain: An immunohistochemical and in situ hybridization histochemical analysis

Giovanna Giuseppina Altobelli; Vincenzo Cimini

The distribution of calretinin containing neurons examined by in situ hybridization mapping was compared with that obtained by immunocytochemistry in the brain of octopus. Results revealed a close correspondence between the two types of investigations. Western blot analysis disclosed a 29 kDa protein immunostained with anti-calretinin antibody. Calretinin containing neurons were localized mainly in the cortex of octopus lobes, including the vertical, frontal, basal, buccal, palliovisceral, pedal and branchial, with variations of staining intensity and density of immunoreactive cells. The amacrine cells surrounding calretinin containing neuronal bodies of the cortex were also labeled unlike the glial cells. The close correspondence of blotting analysis, immunocytochemistry and in situ hybridization indicates with no doubt that calretinin, like other calcium-binding proteins previously studied, is also present in the nervous system of cephalopods. Furthermore, although recent findings localize calretinin also in endocrine glands, the presence of this calcium-binding protein in the brain of octopus indicates that calretinin appeared early in the phylogeny as a neuronal protein already in invertebrates.


Journal of Cellular Physiology | 2017

Calretinin Immunoreactivity in the Human Testis Throughout Fetal Life.

Giovanna Giuseppina Altobelli; Francesca Pentimalli; Mariarosaria D'Armiento; Susan Van Noorden; Vincenzo Cimini

The main functions of the testis are sex hormone and sperm cell production. Steroidogenesis occurs in the Leydig interstitial cells and spermatogenesis in the seminiferous tubules. Male gonad morphogenesis is a finely orchestrated process, mainly coordinated by hormones, whose actions can significantly affect post‐pubertal testicular function. Calcium is a key intracellular messenger, which regulates many signal transduction pathways, and is also implicated in steroidogenesis. Calcium homeostasis and signaling rely on many calcium‐binding proteins including calretinin, of the “EF‐hand” protein family. Calretinin is a highly conserved protein mainly expressed in the nervous system but also detected in rat and human adult and fetal testis as well as in pathological conditions. Calretinin expression in the fetal testis, however, has not been thoroughly analyzed probably owing to limited availability and paucity of tissues. Here, we examined by immunocytochemistry the expression of calretinin in human fetal testis specimens, obtained from natural and therapeutic abortions, at various developmental ages. We found that calretinin‐immunoreactive Leydig cells were visible throughout the timeframe studied (14th–27th week). Immunoreactivity was also observed in Sertoli cells and in the germ cells of the immature seminiferous tubules. Overall our data indicate that calretinin expression parallels the decline in Leydig cell number, suggesting that its presence is indeed correlated to their steroidogenic activity. They also suggest that the intratubular positivity of calretinin could be linked to the ability of Sertoli cells to produce locally acting hormones contributing to the histodifferentiation of the male genital tract. J. Cell. Physiol. 232: 1872–1878, 2017.


Journal of Cellular Physiology | 2018

Calcium-binding protein and some neuropeptides in the retina of Octopus vulgaris: A morpho-histochemical study

Giovanna Giuseppina Altobelli; Susan Van Noorden; Vincenzo Cimini

The existence of both calcium‐binding proteins (CBPs) and neuropeptides in the retina and brain of various species of vertebrates and invertebrates is well documented. Octopus retina is particularly interesting because it represents a case of convergent evolution. The aim of this study was to characterize the distribution of two CBPs, calretinin and calbindin, in Octopus retina using morphology, in situ hybridization, immunocytochemistry and Western blot. Calretinin‐like immunoreactivity was found in the photoreceptor cells, but unexpectedly also in the supporting cells. In situ hybridization and Western blot analysis confirmed these results. No immunoreactivity was found for calbindin. Two neuropeptides, Substance P and calcitonin gene‐related peptide (CGRP), as well as neurofilament protein and glial fibrillary acidic protein were also localized in the Octopus retina by immunocytochemistry. Our work provides new insights about calcium‐binding proteins and neuropeptide distribution in Octopus retina and suggests a functional role for calretinin, a highly conserved protein, in visual signal transduction of cephalopods.

Collaboration


Dive into the Giovanna Giuseppina Altobelli's collaboration.

Top Co-Authors

Avatar

Vincenzo Cimini

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gennaro Galasso

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Bruno Trimarco

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Federico Piscione

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alfonso Campanile

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Dario Leosco

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Giuseppe Rengo

University of Naples Federico II

View shared research outputs
Researchain Logo
Decentralizing Knowledge