Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giovanna Marziali is active.

Publication


Featured researches published by Giovanna Marziali.


Haematologica | 2009

MicroRNA 223-dependent expression of LMO2 regulates normal erythropoiesis

Nadia Felli; Francesca Pedini; Paolo Romania; Mauro Biffoni; Ornella Morsilli; Germana Castelli; Simona Santoro; Simona Chicarella; Antonio Sorrentino; Cesare Peschle; Giovanna Marziali

Erythropoiesis is tightly controlled by transcription factors, one of which is the LIM domain-only protein LMO2, but little is still known of the involvement of microRNAs (miRs) in erythroid cell development. This article shows that miR-223 downregulates the expression of LMO2 and thereby blocks erythroid differentiation. Se related perspective article on page 447. Background MicroRNAs are small non-coding RNAs that regulate gene expression through mRNA degradation or translational inhibition. MicroRNAs are emerging as key regulators of normal hematopoiesis and hematologic malignancies. Several miRNAs are differentially expressed during hematopoiesis and their specific expression regulates key functional proteins involved in hematopoietic lineage differentiation. This study focused on the functional role of microRNA-223 (miR-223) on erythroid differentiation. Design and Methods Purified cord blood CD34+ hematopoietic progenitor cells were grown in strictly controlled conditions in the presence of saturating dosage of erythropoietin to selectively induce erythroid differentiation. The effects of enforced expression of miR-223 in unilin-eage erythroid cultures were evaluated in liquid phase culture experiments and clonogenic studies. Results In unilineage erythroid culture of cord blood CD34+ hematopoietic progenitor cells miR-223 is down-regulated, whereas LMO2, an essential protein for erythroid differentiation, is up-regulated. Functional studies showed that enforced expression of miR-223 reduces the mRNA and protein levels of LMO2, by binding to LMO2 3’ UTR, and impairs differentiation of erythroid cells. Accordingly, knockdown of LMO2 by short interfering RNA mimics the action of miR-223. Furthermore, hematopoietic progenitor cells transduced with miR-223 showed a significant reduction of their erythroid clonogenic capacity, suggesting that downmodulation of this miRNA is required for erythroid progenitor recruitment and commitment. Conclusions These results show that the decline of miR-223 is an important event for erythroid differentiation that leads to the expansion of erythroblast cells at least partially mediated by unblocking LMO2 protein expression.


Molecular and Cellular Biology | 1997

Transcriptional regulation of the ferritin heavy-chain gene: the activity of the CCAAT binding factor NF-Y is modulated in heme-treated Friend leukemia cells and during monocyte-to-macrophage differentiation.

Giovanna Marziali; Edvige Perrotti; Ramona Ilari; Ugo Testa; Eliana M. Coccia; Angela Battistini

The ferritin H-chain gene promoter regulation was analyzed in heme-treated Friend leukemia cells (FLCs) and during monocyte-to-macrophage differentiation. In the majority of cell lines studied, the regulation of ferritin expression was exerted mostly at the translational level. However, in differentiating erythroid cells, which must incorporate high levels of iron to sustain hemoglobin synthesis, and in macrophages, which are involved in iron storage, transcriptional regulation seemed to be a relevant mechanism. We show here that the minimum region of the ferritin H-gene promoter that is able to confer transcriptional regulation by heme in FLCs to a reporter gene is 77 nucleotides upstream of the TATA box. This cis element binds a protein complex referred to as HRF (heme-responsive factor), which is greatly enhanced both in heme-treated FLCs and during monocyte-to-macrophage differentiation. The CCAAT element present in reverse orientation in this promoter region of the ferritin H-chain gene is necessary for binding and for gene activity, since a single point mutation is able to abolish the binding of HRF and the transcriptional activity in transfected cells. By competition experiments and supershift assays, we identified the induced HRF as containing at least the ubiquitous transcription factor NF-Y. NF-Y is formed by three subunits, A, B, and C, all of which are necessary for DNA binding. Cotransfection with a transdominant negative mutant of the NF-YA subunit abolishes the transcriptional activation by heme, indicating that NF-Y plays an essential role in this activation. We have also observed a differential expression of the NF-YA subunit in heme-treated and control FLCs and during monocyte-to-macrophage differentiation.


British Journal of Haematology | 2008

MicroRNA 155 modulates megakaryopoiesis at progenitor and precursor level by targeting Ets-1 and Meis1 transcription factors

Paolo Romania; Valentina Lulli; Elvira Pelosi; Mauro Biffoni; Cesare Peschle; Giovanna Marziali

MicroRNAs (miRNAs) control basic biological functions and are emerging as key regulators of haematopoiesis. This study focused on the functional role of MIRN155 on megakaryocytic (MK) differentiation of human cord blood CD34+ haematopoietic progenitor cells (HPCs). MIRN155, abundantly expressed in early HPCs, decreases sharply during MK differentiation. Functional studies showed that enforced expression of MIRN155 impairs proliferation and differentiation of MK cells. Furthermore, HPCs transfected with MIRN155 showed a significant reduction of their MK clonogenic capacity, suggesting that down‐modulation of this miRNA favours MK progenitor differentiation. Consistent with this observation, MIRN155 down‐regulates, by directly binding to their 3′‐UTR, the expression of Ets‐1 and Meis1, two transcription factors with well‐known functions in MK cells. These results show that the decline of MIRN155 is required for MK proliferation and differentiation at progenitors and precursors level and indicate that sustained expression of MIRN155 inhibits megakaryopoiesis.


Journal of Experimental Medicine | 2002

Modulation of human immunodeficiency virus 1 replication by interferon regulatory factors.

Marco Sgarbanti; Alessandra Borsetti; Nicola Moscufo; Maria C. Bellocchi; Barbara Ridolfi; Filomena Nappi; Giulia Marsili; Giovanna Marziali; Eliana M. Coccia; Barbara Ensoli; Angela Battistini

Transcription of the human immunodeficiency virus (HIV)-1 is controlled by the cooperation of virally encoded and host regulatory proteins. The Tat protein is essential for viral replication, however, expression of Tat after virus entry requires HIV-1 promoter activation. A sequence in the 5′ HIV-1 LTR, containing a binding site for transcription factors of the interferon regulatory factors (IRF) family has been suggested to be critical for HIV-1 transcription and replication. Here we show that IRF-1 activates HIV-1 LTR transcription in a dose-dependent fashion and in the absence of Tat. This has biological significance since IRF-1 is produced early upon virus entry, both in cell lines and in primary CD4+ T cells, and before expression of Tat. IRF-1 also cooperates with Tat in amplifying virus gene transcription and replication. This cooperation depends upon a physical interaction that is blocked by overexpression of IRF-8, the natural repressor of IRF-1, and, in turn is released by overexpression of IRF-1. These data suggest a key role of IRF-1 in the early phase of viral replication and/or during viral reactivation from latency, when viral transactivators are absent or present at very low levels, and suggest that the interplay between IRF-1 and IRF-8 may play a key role in virus latency.


Oncogene | 1999

Activation and repression of the 2-5A synthetase and p21 gene promoters by IRF-1 and IRF-2

Eliana M. Coccia; Nicoletta Del Russo; Emilia Stellacci; Roberto Orsatti; Eleonora Benedetti; Giovanna Marziali; John Hiscott; Angela Battistini

The Interferon Regulatory Factors-1 and -2 (IRF-1 and IRF-2) were originally identified as transcriptional regulators of the interferon (IFN) and IFN-stimulated genes. These factors also modulate immune response and play a role in cell growth regulation. In this study we analysed the effect of the ectopic expression of IRF-1 and IRF-2 on the regulation of two potential IRF target genes involved in cell growth regulation, 2-5A synthetase and p21 (WAF/CP1), both of which contain consensus binding sites for IRF family members within their promoters. Following ectopic expression, IRF-1 transactivated 2-5A synthetase and p21 genes, an effect that was counterbalanced by concomitant ectopic expression of IRF-2. These effects were mediated by direct binding of IRF to the gene promoters. A construct expressing an IRF-2 antisense (FRI-2) was able to revert the inhibitory effect of IRF-2 on the IRF-1 transactivation. IRF-1 also induced expression of its homologous repressor IRF-2 as indicated by EMSA analysis using an IRF-E probe from the IRF-2 promoter; and by cotransfection of IRF-1 together with an IRF-2 promoter CAT construct. Therefore, the induction of IRF-1 by IFNs or other stimuli acts as a transactivator of genes involved in cell growth regulation, as well as of its own repressor IRF-2, thus providing autoinhibitory regulation of IRF-1 activated genes.


European Journal of Neuroscience | 1998

Synergistic stimulation of MHC class I and IRF-1 gene expression by IFN-gamma and TNF-alpha in oligodendrocytes

Cristina Agresti; Antonietta Bernardo; N. Del Russo; Giovanna Marziali; Angela Battistini; F. Aloisi; Giulio Levi; Eliana M. Coccia

In order to understand the molecular basis of the synergistic action of interferon γ (IFN‐γ) and tumour necrosis factor α (TNF‐α) on rat oligodendrocyte development, we studied some aspects of the signalling pathways involved in the regulation of the major histocompatibility complex (MHC) class I and the interferon regulatory factor 1 (IRF‐1) gene expression. Two well‐defined inducible enhancers of the MHC class I gene promoter, the MHC class I regulatory element (MHC‐CRE) and the interferon consensus sequence (ICS), were analysed. Neither IFN‐γ nor TNF‐α was capable of inducing MHC‐CRE binding activity when administrated alone. Following the exposure of oligodendrocytes to IFN‐γ, TNF‐R1 expression was transcriptionally induced by the binding of signal transducer and activator of transcription (STAT‐1) homodimers to the IFN‐γ activated site (GAS) present in the gene promoter. The upregulation of TNF‐R1 allowed TNF‐α to induce the binding of nuclear factor‐κB (NF‐κB) to the MHC‐CRE site. With respect to ICS element, IFN‐γ induced IRF‐1 binding, that was further enhanced upon co‐treatment with TNF‐α. The existence of a synergism between IFN‐γ and TNF‐α in stimulating IRF‐1 expression at the transcriptional level was supported by IRF‐1 promoter analysis: IFN‐γ directly induced the binding of STAT‐1 homodimers to the GAS element, while NF‐κB binding to the κB sequence was activated by TNF‐α only after IFN‐γ treatment. This transcriptional regulation of IRF‐1 gene by IFN‐γ and TNF‐α was confirmed at the mRNA level. The synergism demonstrated in the present study highlights the importance of cytokine interactions in magnifying their biological effects during brain injury and inflammation.


PLOS ONE | 2013

MicroRNA-486-3p Regulates γ-Globin Expression in Human Erythroid Cells by Directly Modulating BCL11A

Valentina Lulli; Paolo Romania; Ornella Morsilli; Paolo Cianciulli; Marco Gabbianelli; Ugo Testa; Giovanna Marziali

MicroRNAs (miRNAs) play key roles in modulating a variety of cellular processes through repression of mRNAs target. The functional relevance of microRNAs has been proven in normal and malignant hematopoiesis. While analyzing miRNAs expression profile in unilineage serum-free liquid suspension unilineage cultures of peripheral blood CD34+ hematopoietic progenitor cells (HPCs) through the erythroid, megakaryocytic, granulocytic and monocytic pathways, we identified miR-486-3p as mainly expressed within the erythroid lineage. We showed that miR-486-3p regulates BCL11A expression by binding to the extra-long isoform of BCL11A 3′UTR. Overexpression of miR-486-3p in erythroid cells resulted in reduced BCL11A protein levels, associated to increased expression of γ-globin gene, whereas inhibition of physiological miR-486-3p levels increased BCL11A and, consequently, reduced γ-globin expression. Thus, miR-486-3p regulating BCL11A expression might contributes to fetal hemoglobin (HbF) modulation and arise the question as to what extent this miRNA might contribute to different HbF levels observed among β-thalassemia patients. Erythroid cells, differentiated from PB CD34+ cells of a small cohort of patients affected by major or intermedia β-thalassemia, showed miR-486-3p levels significantly higher than those observed in normal counterpart. Importantly, in these patients, miR-486-3p expression correlates with increased HbF synthesis. Thus, our data indicate that miR-486-3p might contribute to different HbF levels observed among thalassemic patients and, possibly, to the clinical severity of the disease.


Oncogene | 2013

MiRNA let-7c promotes granulocytic differentiation in acute myeloid leukemia

A. Pelosi; S. Careccia; Valentina Lulli; P. Romania; Giovanna Marziali; Ugo Testa; S. Lavorgna; Francesco Lo-Coco; Maria Concetta Petti; Bruno Calabretta; Massimo Levrero; Giulia Piaggio; Maria Giulia Rizzo

MicroRNAs (miRNAs), small non-coding RNAs that regulate gene expression post-transcriptionally, are involved in many complex cellular processes. Several miRNAs are differentially expressed in hematopoietic tissues and play important roles in normal differentiation, but, when aberrantly regulated, contribute to the abnormal proliferation and differentiation of leukemic cells. Recently, we reported that a small subset of miRNAs is differentially expressed in acute promyelocytic leukemia (APL) blasts and is modulated by treatment with all-trans-retinoic acid (ATRA). In particular, PML/RARα-positive blasts from APL patients display lower levels of miRNA let-7c, a member of the let-7 family, than normal promyelocytes and its expression increases after ATRA treatment. In this study, we investigated the effects of let-7c in acute myeloid leukemia (AML) cells. We found that ectopic expression of let-7c promotes granulocytic differentiation of AML cell lines and primary blasts. Moreover, we identified PBX2, a well-known homeodomain protein whose aberrant expression enhances HoxA9-dependent leukemogenesis, as a novel let-7c target that may contribute to the AML phenotype. Together, these studies raise the possibility that perturbation of the let-7c-PBX2 pathway may have a therapeutic value in AML.


Cell Death & Differentiation | 2006

Overexpression of Ets-1 in human hematopoietic progenitor cells blocks erythroid and promotes megakaryocytic differentiation

Valentina Lulli; Paolo Romania; Ornella Morsilli; Marco Gabbianelli; A Pagliuca; S Mazzeo; Ugo Testa; Cesare Peschle; Giovanna Marziali

Ets-1 is a widely expressed transcription factor implicated in development, tumorigenesis and hematopoiesis. We analyzed Ets-1 gene expression during human erythroid and megakaryocytic (MK) differentiation in unilineage cultures of CD34+ progenitor cells. During erythroid maturation, Ets-1 is downmodulated and exported from the nucleus into the cytoplasm through an active mechanism mediated by a leucine-rich nuclear export signal. In contrast, during megakaryocytopoiesis Ets-1 increases and remains localized in the nucleus up to terminal maturation. Overexpression of Ets-1 in erythroid cells blocks maturation at the polychromatophilic stage, increases GATA-2 and decreases both GATA-1 and erythropoietin receptor expression. Conversely, Ets-1 overexpressing megakaryocytes are characterized by enhanced differentiation and maturation, coupled with upmodulation of GATA-2 and megakaryocyte-specific genes. We show that Ets-1 binds to and activates the GATA-2 promoter, in vitro and in vivo, indicating that one of the pathways through which Ets-1 blocks erythroid and promotes MK differentiation is via upmodulation of GATA-2 expression.


Biochemical Journal | 2004

Interferon regulatory factor-2 drives megakaryocytic differentiation.

Emilia Stellacci; Ugo Testa; Eleonora Petrucci; Eleonora Benedetti; Roberto Orsatti; Tiziana Feccia; Marit Stafsnes; Eliana M. Coccia; Giovanna Marziali; Angela Battistini

IRFs [IFN (interferon) regulatory factors] constitute a family of transcription factors involved in IFN signalling and in the development and differentiation of the immune system. IRF-2 has generally been described as an antagonist of IRF-1-mediated transcription of IFN and IFN-inducible genes; however, it has been recently identified as a transcriptional activator of some genes, such as those encoding histone H4, VCAM-1 (vascular cell adhesion molecule-1) and Fas ligand. Biologically, IRF-2 plays an important role in cell growth regulation and has been shown to be a potential oncogene. Studies in knock-out mice have also implicated IRF-2 in the differentiation and functionality of haematopoietic cells. Here we show that IRF-2 expression in a myeloid progenitor cell line leads to reprogramming of these cells towards the megakaryocytic lineage and enables them to respond to thrombopoietin, as assessed by cell morphology and expression of specific differentiation markers. Up-regulation of transcription factors involved in the development of the megakaryocytic lineage, such as GATA-1, GATA-2, FOG-1 (friend of GATA-1) and NF-E2 (nuclear factor-erythroid-2), and transcriptional stimulation of the thrombopoietin receptor were also demonstrated. Our results provide evidence for a key role for IRF-2 in the induction of a programme of megakaryocytic differentiation, and reveal a remarkable functional diversity of this transcription factor in the regulation of cellular responses.

Collaboration


Dive into the Giovanna Marziali's collaboration.

Top Co-Authors

Avatar

Angela Battistini

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Eliana M. Coccia

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Ugo Testa

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Valentina Lulli

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Cesare Peschle

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Emilia Stellacci

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Ramona Ilari

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Edvige Perrotti

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Roberto Orsatti

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Elvira Pelosi

Istituto Superiore di Sanità

View shared research outputs
Researchain Logo
Decentralizing Knowledge