Giovanna Moratti
National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Giovanna Moratti.
Geological Journal | 1998
Giovanna Moratti; Marco Bonini
This paper presents a geological–structural study of some Neogene hinterland basins of the Northern Apennines, located on the Tyrrhenian side of the chain. These basins developed on the already delineated thrust-fold belt from middle–late Tortonian times. Their evolution has been commonly referred to an extensional tectonic regime, related to the opening of the Tyrrhenian Sea. New data have allowed us to hypothesize a different tectonic evolution for the chain, where compressive tectonics plays a major role both in the external and in the hinterland area. In this frame, the hinterland area located west of a major outcropping crustal thrust (Mid-Tuscany Metamorphic Ridge) has been the target of a geological–structural investigation. The field mapping and structural analysis has been focused on the syntectonic sediments of the Radicondoli–Volterra basin as well as on adjoining minor basins. These basins commonly display a synclinal structure and are generally located in between basement culminations, probably corresponding to thrust anticlines. Sediments of the hinterland basins have been affected by compressive deformation and regional unconformities separate stratigraphic units due to the activity of basement thrusts. In the study area, normal faulting either accommodates the thrusting processes or post-dates compressive deformation. A chronology of faulting and a six-stage evolution of this area are presented, providing further insights for the Neogene tectonic evolution of the Northern Apennines. Copyright
Bollettino Della Societa Geologica Italiana | 2015
Michele Marroni; Giovanna Moratti; Armando Costantini; Sandro Conticelli; Marco Benvenuti; Luca Pandolfi; Marco Bonini; Gianluca Cornamusini; Marinella A. Laurenzi
This paper and the associated 1:50,000 geological map are devoted to describe the geological features of the Monte Amiata region. The tectono-stratigraphic setting of Monte Amiata region includes, from bottom to top, 1) the pre-Neogene stack of tectonic units, made up of Tuscan, Sub-Ligurian and Ligurian Tectonic Units, 2) the Neogene sedimentary deposits and 3) the Plei -stocene Radicofani and Monte Amiata volcanoes. The pre-Neogene stack of tectonic units includes, from bottom to top, the Tuscan Nappe, belonging to the Tuscan Domain, and Canetolo Tectonic Unit, belonging to the Sub-Ligurian Domain. These tectonic units, regarded as representative of the thinned continental margin of the Adria plate, are topped by the Santa Fiora and Ophiolitic Tectonic Units, interpreted as remnants of the Ligure-Piemontese oceanic basin and its transition to the Adria continental margin. All the tectonic units of the pre-Neogene stack have been affected by folds and thrusts originated during the convergence related to the Europe-Africa motion during the Middle Eocene-Early Miocene. Subsequently, these tectonic units were affected by a widespread reduction of thickness of their successions due to low-angle normal faulting related to the Middle Miocene extensional tectonics. The Neogene sedimentary deposits unconformably overlie the pre-Neogene stack of tectonic units. They consist of Upper Miocene to Pliocene continental and marine sediments, filling the Cinigiano-Baccinello, Velona, and Siena-Radicofani basins, adopting an informal hierarchy of different stratigraphic units where the first order units are synthems. The Pleistocene Radicofani and Monte Amiata volcanoes are made up by high-K basaltic andesitic to shoshonitic volcanic rocks and by trachydacitic to trachytic and olivine-latitic volcanic rocks, respectively. The geological mapping has provided evidences of a complex tectonic setting resulting from a long-lived history shifting from Cretaceous to Early Miocene compressive events to Middle Miocene extensional tectonics and Late Miocene-Pleistocene contractional and extensional events during which the Pleistocene magmatic activity occurred. In this regard, the Monte Amiata region can be regarded as a key area where the final result of a 200 Ma long geological history of the Northern Apennines is exposed.
Bollettino Della Societa Geologica Italiana | 2012
Federico Sani; Giovanna Moratti; M. Coli; Pietro Laureano; Luisa Rovero; Ugo Tonietti; N. Coli
We present a geological and architectural integrated pilot study, aiming at the preservation of the Biet Gabriel-Rufael church, located in Lalibela, the worldwide known Ethiopian rock hewn monumental site protected by UNESCO since 1978. The town developed since the Neolithic up to the medieval age, as inferred from the traces of three distinct architectural phases. Lalibela was built on a geological substratum made of rocks belonging to the Ethiopian Plateau suite, which is mainly composed of basalts of fissural origin or derived from shield volcanoes. The geological units are composed of alternating massive and scoriaceous basalts. The main scoriaceous basalt level, embedded within the massive basalts, is 30–40 m thick and corresponds to the horizon within which the Biet Gabriel-Rufael church all the other monuments of Lalibela have been carved. Therefore, the evolution of the town was strongly conditioned by the occurrence and extent of the softer scoriaceous basalt level. Many fracture systems of both natural (i.e. geological) and anthropic origin (these latter connected to the carving of the church), were recognized. The fracture pattern determined the subdivision of the church into different blocks that can behave independently, thus compromising the stability of the monument. A net of deformometers and fracture gauges was installed for the monitoring of the fracture system and a preliminary Finite Element analysis, following the approach used for underground excavations, was performed, with the aim of elucidate the mechanical behaviour of the rock. The integration between geo-mechanical approach to the rock mass and the architectural study of the critical situation due to the carving and connected to buildings, resulted in the precise individuation of future interventions devoted to the conservation of these monuments.
Bollettino Della Societa Geologica Italiana | 2009
Federico Sani; Marco Bonini; Andrea Cerrina Feroni; Francesco Mazzarini; Giovanna Moratti; Giovanni Musumeci; Giacomo Corti; Federica Iatta; Alessandro Ellero
This paper illustrates the results of structural studies carried out in the western margin of Tuscany along a major crustal structure. Surface deformation of sediments filling different basins aligned on top of this major structure (from north to south: the Fine Basin, the Sassa-Guardistallo basin, the Rio Guardigiano area in the Lustignano basin) allow us to date its tectonic activity to the Messinian-Early Pliocene. In these areas, structures such as reverse and strike-slip faults and mesoscopic folds are widely developed. Structural analysis determined a compressive stress field with the σ1 oriented from E-W to NE-SW active from Messinian to Early Pliocene. At the southern end of this crustal structure, the Gavorrano antiform and the granitic pluton (radiometric age of granite ∼4.4 Ma) coring this fold correlate with a thrust ramp anticline at depth, and thus constrain thrust activity to the Early Pliocene. These data document a Messinian-Early Pliocene compressive activity that contrasts with models invoking continuous extensional tectonics affecting the hinterland since the Late Oligocene-Middle Miocene in the frame of a back-arc-slab retreating process. The results presented therefore raise the question of which geodynamical model could account for such a complex structural evolution of Northern Apennines hinterland.
Bollettino Della Societa Geologica Italiana | 2015
Marco Benvenuti; Giovanna Moratti; Federico Sani; Marco Bonini; Oriol Oms; Mauro Papini; Lorenzo Rook; Chiara Cavallina; Lorenzo Cavini
The paper reports a revision of the tectonic-depositional evolution of the continental Cinigiano-Baccinello and Velona basins, located in the Amiata Volcano region, with special emphasis on the Messinian dynamics. Integration of facies analysis, magnetostratigraphy, and structural geology allowed a comparison of the evolution of these basins and a discussion of possible local to regional implications. At a local scale, crustal shortening, accommodated by thrust faults and related anticlines delimiting the basins, determined a dynamic physiographic and hydrographic scenario during the Messinian. Uplift of the tectonically-controlled shoulders was paired with pulses of subsidence in the basins that favoured the development of palustrine-lacustrine settings or endorheic alluvial plains. Stages of quiescent tectonics favoured fluvial incision of structural thresholds and the development of a south-directed drainage system, particularly developed during the late Messinian in coincidence with the Mediterranean Messinian Salinity Crisis. The dominant fluvial and clastic depositional pattern recorded in these basins during such a regional scale event points to local tectonic activity of the Northern Apennines playing a major role than the climatic, eustatic and geodynamic factors that controlled the Mediterranean region.
Geological Magazine | 2018
Giuseppe Nirta; Giovanna Moratti; Luigi Piccardi; Domenico Montanari; Nicolaos Carras; Rita Catanzariti; Marco Chiari; Marta Marcucci
The aim of this paper is to contribute to deciphering the evolutionary history of the Hellenides by the study of a large sector of the chain located between the front of the ophiolitic units and the external zones classically attributed to the continental margin of Adria. In particular, the tectonic units located in Boeotia – a key area located in Central Greece at the boundary between the Internal and External Hellenides – were studied from structural, stratigraphic and biostratigraphic points of view. Addressing the main debated aspects concerning the origin of the ophiolite nappe(s), the tectonic evolution of the Hellenic orogen was revised with a particular emphasis on the period between obduction and continental collision. New findings were compared with consolidated data concerning the main metamorphic events recorded in the more Internal Hellenides, geochemistry and age of the ophiolites and main stratigraphic constraints obtained in other sectors of the belt. Finally, a new reconstruction of the tectonic evolution of this area was introduced and, in the context of the dispute concerning the origin of the ‘ophiolitic belts’ as a possible record of multiple oceanic basins, we put forward for consideration a ‘single ocean’ tectonic model spanning from Triassic up to Tertiary times, and valid for the whole Hellenic–Albanian sector.
Journal of Petroleum Geology | 1999
Mario Boccaletti; Marco Bonini; Giovanna Moratti; Federico Sani
Tectonophysics | 2009
Federico Sani; Marco Bonini; Luigi Piccardi; Gianfranco Vannucci; Dario Delle Donne; Marco Benvenuti; Giovanna Moratti; Giacomo Corti; Domenico Montanari; Lorenzo Sedda; C. Tanini
Journal of Structural Geology | 2005
Giacomo Corti; Giovanna Moratti; Federico Sani
Tectonophysics | 1999
Marco Bonini; Giovanna Moratti; Federico Sani