Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giovanni Destro Bisol is active.

Publication


Featured researches published by Giovanni Destro Bisol.


Molecular Biology and Evolution | 2015

The Y-Chromosome Tree Bursts into Leaf: 13,000 High-Confidence SNPs Covering the Majority of Known Clades

Pille Hallast; Chiara Batini; Daniel Zadik; Pierpaolo Maisano Delser; Jon H. Wetton; Eduardo Arroyo-Pardo; Gianpiero L. Cavalleri; Peter de Knijff; Giovanni Destro Bisol; Berit Myhre Dupuy; Heidi Eriksen; Lynn B. Jorde; Turi E. King; Maarten Larmuseau; Adolfo López de Munain; Ana María López-Parra; Aphrodite Loutradis; Jelena Milasin; Andrea Novelletto; Horolma Pamjav; Antti Sajantila; Werner Schempp; Matt Sears; Aslıhan Tolun; Chris Tyler-Smith; Anneleen Van Geystelen; Scott Watkins; Bruce Winney; Mark A. Jobling

Many studies of human populations have used the male-specific region of the Y chromosome (MSY) as a marker, but MSY sequence variants have traditionally been subject to ascertainment bias. Also, dating of haplogroups has relied on Y-specific short tandem repeats (STRs), involving problems of mutation rate choice, and possible long-term mutation saturation. Next-generation sequencing can ascertain single nucleotide polymorphisms (SNPs) in an unbiased way, leading to phylogenies in which branch-lengths are proportional to time, and allowing the times-to-most-recent-common-ancestor (TMRCAs) of nodes to be estimated directly. Here we describe the sequencing of 3.7 Mb of MSY in each of 448 human males at a mean coverage of 51×, yielding 13,261 high-confidence SNPs, 65.9% of which are previously unreported. The resulting phylogeny covers the majority of the known clades, provides date estimates of nodes, and constitutes a robust evolutionary framework for analyzing the history of other classes of mutation. Different clades within the tree show subtle but significant differences in branch lengths to the root. We also apply a set of 23 Y-STRs to the same samples, allowing SNP- and STR-based diversity and TMRCA estimates to be systematically compared. Ongoing purifying selection is suggested by our analysis of the phylogenetic distribution of nonsynonymous variants in 15 MSY single-copy genes.


PLOS ONE | 2012

Mine, Yours, Ours? Sharing Data on Human Genetic Variation

Nicola Milia; Alessandra Congiu; Paolo Anagnostou; Francesco Montinaro; Marco Capocasa; Emanuele Sanna; Giovanni Destro Bisol

The achievement of a robust, effective and responsible form of data sharing is currently regarded as a priority for biological and bio-medical research. Empirical evaluations of data sharing may be regarded as an indispensable first step in the identification of critical aspects and the development of strategies aimed at increasing availability of research data for the scientific community as a whole. Research concerning human genetic variation represents a potential forerunner in the establishment of widespread sharing of primary datasets. However, no specific analysis has been conducted to date in order to ascertain whether the sharing of primary datasets is common-practice in this research field. To this aim, we analyzed a total of 543 mitochondrial and Y chromosomal datasets reported in 508 papers indexed in the Pubmed database from 2008 to 2011. A substantial portion of datasets (21.9%) was found to have been withheld, while neither strong editorial policies nor high impact factor proved to be effective in increasing the sharing rate beyond the current figure of 80.5%. Disaggregating datasets for research fields, we could observe a substantially lower sharing in medical than evolutionary and forensic genetics, more evident for whole mtDNA sequences (15.0% vs 99.6%). The low rate of positive responses to e-mail requests sent to corresponding authors of withheld datasets (28.6%) suggests that sharing should be regarded as a prerequisite for final paper acceptance, while making authors deposit their results in open online databases which provide data quality control seems to provide the best-practice standard. Finally, we estimated that 29.8% to 32.9% of total resources are used to generate withheld datasets, implying that an important portion of research funding does not produce shared knowledge. By making the scientific community and the public aware of this important aspect, we may help popularize a more effective culture of data sharing.


PLOS ONE | 2013

Detecting Genetic Isolation in Human Populations: A Study of European Language Minorities

Marco Capocasa; Cinzia Battaggia; Paolo Anagnostou; Francesco Montinaro; Ilaria Boschi; Gianmarco Ferri; Milena Alù; Valentina Coia; Federica Crivellaro; Giovanni Destro Bisol

The identification of isolation signatures is fundamental to better understand the genetic structure of human populations and to test the relations between cultural factors and genetic variation. However, with current approaches, it is not possible to distinguish between the consequences of long-term isolation and the effects of reduced sample size, selection and differential gene flow. To overcome these limitations, we have integrated the analysis of classical genetic diversity measures with a Bayesian method to estimate gene flow and have carried out simulations based on the coalescent. Combining these approaches, we first tested whether the relatively short history of cultural and geographical isolation of four “linguistic islands” of the Eastern Alps (Lessinia, Sauris, Sappada and Timau) had left detectable signatures in their genetic structure. We then compared our findings to previous studies of European population isolates. Finally, we explored the importance of demographic and cultural factors in shaping genetic diversity among the groups under study. A combination of small initial effective size and continued genetic isolation from surrounding populations seems to provide a coherent explanation for the diversity observed among Sauris, Sappada and Timau, which was found to be substantially greater than in other groups of European isolated populations. Simulations of micro-evolutionary scenarios indicate that ethnicity might have been important in increasing genetic diversity among these culturally related and spatially close populations.


PLOS ONE | 2015

When data sharing gets close to 100%: what human paleogenetics can teach the Open Science movement

Paolo Anagnostou; Marco Capocasa; Nicola Milia; Emanuele Sanna; Cinzia Battaggia; Daniela Luzi; Giovanni Destro Bisol

This study analyzes data sharing regarding mitochondrial, Y chromosomal and autosomal polymorphisms in a total of 162 papers on ancient human DNA published between 1988 and 2013. The estimated sharing rate was not far from totality (97.6% ± 2.1%) and substantially higher than observed in other fields of genetic research (evolutionary, medical and forensic genetics). Both a questionnaire-based survey and the examination of Journals’ editorial policies suggest that this high sharing rate cannot be simply explained by the need to comply with stakeholders requests. Most data were made available through body text, but the use of primary databases increased in coincidence with the introduction of complete mitochondrial and next-generation sequencing methods. Our study highlights three important aspects. First, our results imply that researchers’ awareness of the importance of openness and transparency for scientific progress may complement stakeholders’ policies in achieving very high sharing rates. Second, widespread data sharing does not necessarily coincide with a prevalent use of practices which maximize data findability, accessibility, useability and preservation. A detailed look at the different ways in which data are released can be very useful to detect failures to adopt the best sharing modalities and understand how to correct them. Third and finally, the case of human paleogenetics tells us that a widespread awareness of the importance of Open Science may be important to build reliable scientific practices even in the presence of complex experimental challenges.


PLOS ONE | 2013

Demographic histories, isolation and social factors as determinants of the genetic structure of alpine linguistic groups

Valentina Coia; Marco Capocasa; Paolo Anagnostou; Vincenzo Lorenzo Pascali; Francesca Scarnicci; Ilaria Boschi; Cinzia Battaggia; Federica Crivellaro; Gianmarco Ferri; Milena Alù; Francesca Brisighelli; George B.J. Busby; Cristian Capelli; Frank Maixner; Giovanna Cipollini; Pier Paolo Viazzo; Albert Zink; Giovanni Destro Bisol

Great European mountain ranges have acted as barriers to gene flow for resident populations since prehistory and have offered a place for the settlement of small, and sometimes culturally diverse, communities. Therefore, the human groups that have settled in these areas are worth exploring as an important potential source of diversity in the genetic structure of European populations. In this study, we present new high resolution data concerning Y chromosomal variation in three distinct Alpine ethno-linguistic groups, Italian, Ladin and German. Combining unpublished and literature data on Y chromosome and mitochondrial variation, we were able to detect different genetic patterns. In fact, within and among population diversity values observed vary across linguistic groups, with German and Italian speakers at the two extremes, and seem to reflect their different demographic histories. Using simulations we inferred that the joint effect of continued genetic isolation and reduced founding group size may explain the apportionment of genetic diversity observed in all groups. Extending the analysis to other continental populations, we observed that the genetic differentiation of Ladins and German speakers from Europeans is comparable or even greater to that observed for well known outliers like Sardinian and Basques. Finally, we found that in south Tyroleans, the social practice of Geschlossener Hof, a hereditary norm which might have favored male dispersal, coincides with a significant intra-group diversity for mtDNA but not for Y chromosome, a genetic pattern which is opposite to those expected among patrilocal populations. Together with previous evidence regarding the possible effects of “local ethnicity” on the genetic structure of German speakers that have settled in the eastern Italian Alps, this finding suggests that taking socio-cultural factors into account together with geographical variables and linguistic diversity may help unveil some yet to be understood aspects of the genetic structure of European populations.


Molecular Ecology | 2012

When gender matters: new insights into the relationships between social systems and the genetic structure of human populations

Giovanni Destro Bisol; Marco Capocasa; Paolo Anagnostou

Due to its important effects on the ecological dynamics and the genetic structure of species, biologists have long been interested in gender‐biased dispersal, a condition where one gender is more prone to move from the natal site. More recently, this topic has attracted a great attention from human evolutionary geneticists. Considering the close relations between residential rules and social structure, gender‐biased dispersal is, in fact, regarded as an important case study concerning the effects of socio‐cultural factors on human genetic variation. It all started with the seminal paper by Mark Seielstad, Erich Minch and Luigi Luca Cavalli Sforza from Stanford University (Seielstad et al. 1998). They observed a larger differentiation for Y‐chromosome than mitochondrial DNA between extant human populations, purportedly a consequence of the prevalence of long‐term patrilocality in human societies. Subsequent studies, however, have highlighted the need to consider geographically close and culturally homogeneous groups, disentangle signals due to different peopling events and obtain unbiased estimates of genetic diversity. In this issue of Molecular Ecology, not only do Marks et al. (2012) adopt an experimental design which addresses these concerns, but they also take a further and important step forward by integrating the genetic analysis of two distant populations, the Basotho and Spanish, with data regarding migration rates and matrimonial distances. Using both empirical evidence and simulations, the authors show that female‐biased migration due to patrilocality might shape the genetic structure of human populations only at short ranges and under substantial differences in migration rates between genders. Providing a quantitative framework for future studies of the effects of residential rules on the human genome, this study paves the way for further developments in the field. On a wider perspective, Marks et al.s work demonstrates the power of approaches which integrate biological, cultural and demographic lines of evidence in the study of relations between social and genetic structures of human populations.


Forensic Science International-genetics | 2012

Using forensic microsatellites to decipher the genetic structure of linguistic and geographic isolates: A survey in the eastern Italian Alps

Francesco Montinaro; Ilaria Boschi; Federica Trombetta; Sara Merigioli; Paolo Anagnostou; Cinzia Battaggia; Marco Capocasa; Federica Crivellaro; Giovanni Destro Bisol; Valentina Coia

The study of geographically and/or linguistically isolated populations could represent a potential area of interaction between population and forensic genetics. These investigations may be useful to evaluate the suitability of loci which have been selected using forensic criteria for bio-anthropological studies. At the same time, they give us an opportunity to evaluate the efficiency of forensic tools for parentage testing in groups with peculiar allele frequency profiles. Within the frame of a long-term project concerning Italian linguistic isolates, we studied 15 microsatellite loci (Identifiler kit) comprising the CODIS panel in 11 populations from the north-eastern Italian Alps (Veneto, Trentino and Friuli Venezia Giulia regions). All our analyses of inter-population differentiation highlight the genetic distinctiveness of most Alpine populations comparing them either to each other or with large and non-isolated Italian populations. Interestingly, we brought to light some aspects of population genetic structure which cannot be detected using unilinear polymorphisms. In fact, the analysis of genotypic disequilibrium between loci detected signals of population substructure when all the individuals of Alpine populations are pooled in a single group. Furthermore, despite the relatively low number of loci analyzed, genetic differentiation among Alpine populations was detected at individual level using a Bayesian method to cluster multilocus genotypes. Among the various populations studied, the four linguistic minorities (Fassa Valley, Luserna, Sappada and Sauris) showed the most pronounced diversity and signatures of a peculiar genetic ancestry. Finally, we show that database replacement may affect estimates of probability of paternity even when the local database is replaced by another based on populations which share a common genetic background but which differ in their demographic history. These findings point to the importance of considering the demographic and cultural profile of populations in forensic applications, even in a context of substantial genetic homogeneity such as that of European populations.


PeerJ | 2016

Samples and data accessibility in research biobanks: an explorative survey

Marco Capocasa; Paolo Anagnostou; Flavio D'Abramo; Giulia Matteucci; Valentina Dominici; Giovanni Destro Bisol; Fabrizio Rufo

Biobanks, which contain human biological samples and/or data, provide a crucial contribution to the progress of biomedical research. However, the effective and efficient use of biobank resources depends on their accessibility. In fact, making bio-resources promptly accessible to everybody may increase the benefits for society. Furthermore, optimizing their use and ensuring their quality will promote scientific creativity and, in general, contribute to the progress of bio-medical research. Although this has become a rather common belief, several laboratories are still secretive and continue to withhold samples and data. In this study, we conducted a questionnaire-based survey in order to investigate sample and data accessibility in research biobanks operating all over the world. The survey involved a total of 46 biobanks. Most of them gave permission to access their samples (95.7%) and data (85.4%), but free and unconditioned accessibility seemed not to be common practice. The analysis of the guidelines regarding the accessibility to resources of the biobanks that responded to the survey highlights three issues: (i) the request for applicants to explain what they would like to do with the resources requested; (ii) the role of funding, public or private, in the establishment of fruitful collaborations between biobanks and research labs; (iii) the request of co-authorship in order to give access to their data. These results suggest that economic and academic aspects are involved in determining the extent of sample and data sharing stored in biobanks. As a second step of this study, we investigated the reasons behind the high diversity of requirements to access biobank resources. The analysis of informative answers suggested that the different modalities of resource accessibility seem to be largely influenced by both social context and legislation of the countries where the biobanks operate.


Scientific Reports | 2017

Overcoming the dichotomy between open and isolated populations using genomic data from a large European dataset

Paolo Anagnostou; Valentina Dominici; Cinzia Battaggia; Luca Pagani; Miguel Vilar; R. Spencer Wells; Davide Pettener; Stefania Sarno; Alessio Boattini; Paolo Francalacci; Vincenza Colonna; Giuseppe Vona; Carla Maria Calò; Giovanni Destro Bisol; Sergio Tofanelli

Human populations are often dichotomized into “isolated” and “open” categories using cultural and/or geographical barriers to gene flow as differential criteria. Although widespread, the use of these alternative categories could obscure further heterogeneity due to inter-population differences in effective size, growth rate, and timing or amount of gene flow. We compared intra and inter-population variation measures combining novel and literature data relative to 87,818 autosomal SNPs in 14 open populations and 10 geographic and/or linguistic European isolates. Patterns of intra-population diversity were found to vary considerably more among isolates, probably due to differential levels of drift and inbreeding. The relatively large effective size estimated for some population isolates challenges the generalized view that they originate from small founding groups. Principal component scores based on measures of intra-population variation of isolated and open populations were found to be distributed along a continuum, with an area of intersection between the two groups. Patterns of inter-population diversity were even closer, as we were able to detect some differences between population groups only for a few multidimensional scaling dimensions. Therefore, different lines of evidence suggest that dichotomizing human populations into open and isolated groups fails to capture the actual relations among their genomic features.


bioRxiv | 2016

Overcoming the dichotomy: new insights into the genomic diversity of open and isolated European populations

Paolo Anagnostou; Valentina Dominici; Cinzia Battaggia; Luca Pagani; Miguel Vilar; Spencer Wells; Davide Pettener; Stefania Sarno; Alessio Boattini; Paolo Francalacci; Vincenza Colonna; Giuseppe Vona; Carla Maria Calò; Giovanni Destro Bisol; Sergio Tofanelli

Human populations are often dichotomized into “isolated” and “open” using cultural and/or geographical barriers to gene flow as differential criteria. Although widespread, the use of these alternative categories could obscure further heterogeneity due to inter-population differences in effective size, growth rate, and timing or amount of gene flow. We compared intra and interpopulation variation measures combining novel and literature data relative to 87,818 autosomal SNPs in 14 open populations and 10 geographic and/or linguistic European isolates. Patterns of intra-population diversity were found to vary significantly more among isolates, probably due to differential levels of drift and inbreeding. The relatively large effective size estimated for some population isolates challenges the generalized view that they originate from small founding groups. Principal component scores based on measures of intra-population variation of isolated and open populations turned out to be distributed along a sort of continuum, with an area of intersection between the two groups. Patterns of inter-population diversity were even closer, as we were able to detect some differences between population groups only for a few multidimensional scaling dimensions. Therefore, different lines of evidence suggest that dichotomizing human populations into open and isolated fails to capture the actual relations among their genomic features.

Collaboration


Dive into the Giovanni Destro Bisol's collaboration.

Top Co-Authors

Avatar

Paolo Anagnostou

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Marco Capocasa

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Cinzia Battaggia

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ilaria Boschi

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge