Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giovanni Giurdanella is active.

Publication


Featured researches published by Giovanni Giurdanella.


Journal of Lipid Research | 2007

Endothelial cell-pericyte cocultures induce PLA2 protein expression through activation of PKCα and the MAPK/ERK cascade

Carmelina Daniela Anfuso; Gabriella Lupo; Loriana Romeo; Giovanni Giurdanella; Carla Motta; Alessia Pascale; Cataldo Tirolo; Bianca Marchetti; Mario Alberghina

Little is known about the regulatory mechanisms of endothelial cell (EC) proliferation by retinal pericytes and vice versa. In a model of coculture with bovine retinal pericytes lasting for 24 h, rat brain ECs showed an increase in arachidonic acid (AA) release, whereas Western blot and RT-PCR analyses revealed that ECs activated the protein expression of cytosolic phospholipase A2 (cPLA2) and its phosphorylated form and calcium-independent intracellular phospholipase A2 (iPLA2). No activation of the same enzymes was seen in companion pericytes. In ECs, the protein level of phosphorylated extracellular signal-regulated kinase (ERK) 1/2 was also enhanced significantly, a finding not observed in cocultured pericytes. The expression of protein kinase C-α (PKCα) and its phosphorylated form was also enhanced in ECs. Wortmannin, LY294002, and PD98059, used as inhibitors of upstream kinases (the PI3-kinase/Akt/PDK1 or MEK-1 pathway) in cultures, markedly attenuated AA release and the expression of phosphorylated forms of endothelial cPLA2, PKCα, and ERK1/2. By confocal microscopy, activation of PKCα in perinuclear regions of ECs grown in coculture as well as strong activation of cPLA2 in ECs taken from a model of mixed culture were clearly observed. However, no increased expression of both enzymes was found in cocultured pericytes. Our findings indicate that a sequential activation of PKCα contributes to endothelial ERK1/2 and cPLA2 phosphorylation induced by either soluble factors or direct cell-to-cell contact, and that the PKCα-cPLA2 pathway appears to play a key role in the early phase of EC-pericyte interactions regulating blood retina or blood-brain barrier maturation.


Biochemical Pharmacology | 2013

Role of phospholipases A2 in diabetic retinopathy: In vitro and in vivo studies

Gabriella Lupo; Carla Motta; Giovanni Giurdanella; Carmelina Daniela Anfuso; Mario Alberghina; Filippo Drago; Salvatore Salomone; Claudio Bucolo

Diabetic retinopathy is one of the leading causes of blindness and the most common complication of diabetes with no cure available. We investigated the role of phospholipases A2 (PLA2) in diabetic retinopathy using an in vitro blood-retinal barrier model (BRB) and an in vivo streptozotocin (STZ)-induced diabetic model. Mono- and co-cultures of endothelial cells (EC) and pericytes (PC), treated with high or fluctuating concentrations of glucose, to mimic the diabetic condition, were used. PLA2 activity, VEGF and PGE2 levels and cell proliferation were measured, with or without PLA2 inhibition. Diabetes was induced in rats by STZ injection and PLA2 activity along with VEGF, TNFα and ICAM-1 levels were measured in retina. High or fluctuating glucose induced BRB breakdown, and increased PLA2 activity, PGE2 and VEGF in EC/PC co-cultures; inhibition of PLA2 in mono- or co-cultures treated with high or fluctuating glucose dampened PGE2 and VEGF production down to the levels of controls. High or fluctuating glucose increased EC number and reduced PC number in co-cultures; these effects were reversed after transfecting EC with small interfering RNA targeted to PLA2. PLA2 and COX-2 protein expressions were significantly increased in microvessels from retina of diabetic rats. Diabetic rats had also high retinal levels of VEGF, ICAM-1 and TNFα that were reduced by treatment with a cPLA2 inhibitor. In conclusion, the present findings indicate that PLA2 upregulation represents an early step in glucose-induced alteration of BRB, possibly upstream of VEGF; thus, PLA2 may be an interesting target in managing diabetic retinopathy.


Biochemical Pharmacology | 2015

Aflibercept, bevacizumab and ranibizumab prevent glucose-induced damage in human retinal pericytes in vitro, through a PLA2/COX-2/VEGF-A pathway.

Giovanni Giurdanella; Carmelina Daniela Anfuso; Melania Olivieri; Gabriella Lupo; Nunzia Caporarello; Chiara M. Eandi; Filippo Drago; Claudio Bucolo; Salvatore Salomone

Diabetic retinopathy, a major cause of vision loss, is currently treated with anti-VEGF agents. Here we tested two hypotheses: (i) high glucose damages retinal pericytes, the cell layer surrounding endothelial cells, via VEGF induction, which may be counteracted by anti-VEGFs and (ii) activation of PLA2/COX-2 pathway by high glucose might be upstream and/or downstream of VEGF in perycites, as previously observed in endothelial cells. Human retinal pericytes were treated with high glucose (25mM) for 48h and/or anti-VEGFs (40μg/ml aflibercept, 25μg/ml bevacizumab, 10μg/ml ranibizumab). All anti-VEGFs significantly prevented high glucose-induced cell damage (assessed by LDH release) and improved cell viability (assessed by MTT and Evans blue). High glucose-induced VEGF-A expression, as detected both at mRNA (qPCR) and protein (ELISA) level, while receptor (VEGFR1 and VEGFR2) expression, detected in control condition, was unaffected by treatments. High glucose induced also activation of PLA2/COX-2 pathway, as revealed by increased phosphorylation of cPLA2, COX-2 expression and PGE2 release. Treatment with cPLA2 (50μM AACOCF3) and COX-2 (5μM NS-392) inhibitors prevented both cell damage and VEGF-A induced by high glucose. Finally, challenge with exogenous VEGF-A (10ng/ml) induced VEGF-A expression, while anti-VEGFs reduced VEGF-A expression induced by either high glucose or exogenous VEGF-A. These data indicate that high glucose directly damages pericytes through activation of PLA2/COX-2/VEGF-A pathway. Furthermore, a kind of feed-forward loop between cPLA2/COX-2/PG axis and VEGF appears to operate in this system. Thus, anti-VEGFs afford protection of pericytes from high glucose by inhibiting this loop.


Microvascular Research | 2011

Cytosolic and calcium-independent phospholipase A2 mediate glioma-enhanced proangiogenic activity of brain endothelial cells

Giovanni Giurdanella; Carla Motta; Stefano Muriana; Valeria Arena; Carmelina Daniela Anfuso; Gabriella Lupo; Mario Alberghina

Glioma is characterized by an active production of proangiogenic molecules. We observed that conditioned medium (CM) from C6 glioma significantly enhanced proliferation and migration of immortalized rat brain GP8.3 endothelial cells (ECs) and primary bovine brain microvascular ECs. The glioma CM effect was significantly reduced by cytosolic (cPLA(2)) and Ca(++)-independent (iPLA(2)) phospholipase A(2), cyclooxygenase-2, and protein kinase inhibitors. In GP8.3 ECs, cPLA(2) and iPLA(2) enzyme activities and phosphorylation of cPLA(2), significantly stimulated after 24h CM co-incubation, were attenuated by PLA(2), PI3-K, MEK-1, and ERK1/2 inhibitors. By confocal microscopy, in glioma CM-stimulated ECs, enhancement of fluorescence signals for phospho-cPLA(2), phospho-ERK1/2, phospho-PKCα, COX-2, and iPLA(2) was in parallel observed. Electroporation of anti-iPLA(2) and cPLA(2) antibodies and siRNAs directed against iPLA(2) and cPLA(2) significantly inhibited cell proliferation and migration. Incubation of CM- or VEGF peptide-stimulated ECs with antibodies against VEGF or VEGFR-1/-2 receptors strongly reduced mitotic rate, cell migration, and phospho-cPLA(2) and iPLA(2) protein levels. The findings suggest that PLA(2) activities are involved in stimulating EC migration and proliferation in the presence of glioma CM and that cPLA(2) is positively regulated upstream by PI3-K, PKCα, and ERK1/2 signal cascades. Our work provides new insights in understanding EC metabolism and signaling during tumor angiogenesis.


Biochemical Pharmacology | 2014

Regulation of vascular tone in rabbit ophthalmic artery: Cross talk of endogenous and exogenous gas mediators

Salvatore Salomone; Roberta Foresti; Ambra Villari; Giovanni Giurdanella; Filippo Drago; Claudio Bucolo

Nitric oxide (NO), carbon monoxide (CO) and hydrogen sulphide (H2S) modulate vascular tone. In view of their therapeutic potential for ocular diseases, we examined the effect of exogenous CO and H2S on tone of isolated rabbit ophthalmic artery and their interaction with endogenous and exogenous NO. Ophthalmic artery segments mounted on a wire myograph were challenged with cumulative concentrations of phenylephrine (PE) in the presence or absence of NG-nitro-L-arginine (LNNA) to inhibit production of NO, the CO-releasing molecules CORMs or the H2S-donor GYY4137. The maximal vasoconstriction elicited by PE reached 20-30% of that induced by KCl but was dramatically increased by incubation with LNNA. GYY4137 significantly raised PE-mediated vasoconstriction, but it did not change the response to PE in the presence of LNNA or the relaxation to sodium nitroprusside (SNP). CORMs concentration-dependently inhibited PE-induced constriction, an effect that was synergistic with endogenous NO (reduced by LNNA), but insensitive to blockade of guanylyl cyclase by 1H-[1,2,4]oxadiazolo[4,3,-α]quinoxalin-1-one (ODQ). In vascular tissues cyclic GMP (cGMP) levels seemed reduced by GYY4137 (not significantly), but were not changed by CORM. These data indicate that CO is able per se to relax isolated ophthalmic artery and to synergize with NO, while H2S counteracts the effect of endogenous NO. CO does not stimulate cGMP production in our system, while H2S may reduce cGMP production stimulated by endogenous NO. These findings provide new insights into the complexities of gas interactions in the control of ophthalmic vascular tone, highlighting potential pharmacological targets for ocular diseases.


Microvascular Research | 2009

PKCα-MAPK/ERK-phospholipase A2 signaling is required for human melanoma-enhanced brain endothelial cell proliferation and motility

Carmelina Daniela Anfuso; Giovanni Giurdanella; Carla Motta; Stefano Muriana; Gabriella Lupo; Nicola Ragusa; Mario Alberghina

The largely undefined signal transduction mechanisms and cross-talk between human melanoma cell (HMC) lines and brain endothelial cells (ECs) involved in tumor cell interaction and adhesion were investigated. In immortalized rat brain GP8.3 EC cultures, conditioned media (CM) prepared from SK-MEL28 and OCM-1 melanoma cells significantly enhanced arachidonic acid release, cytosolic phospholipase A(2) (cPLA(2)) and Ca(+)-independent phospholipase A(2) (iPLA(2)) specific activities, and cell growth by 24 h. Inhibitors such as wortmannin and LY294002 (vs. PI3 kinase activity), AACOCF(3), (vs. cPLA(2) and iPLA(2)), PD98059 (vs. ERK1/2 activity) and NS-398 (vs. cyclooxygenase-2 activity, COX-2) were all able to block cell proliferation and motility determined using a scratch wound healing assay in melanoma CMs-stimulated EC monolayers. These media also support the enhanced cell proliferation of primary ECs derived from rat brain (BBEC). Electroporation of anti-cPLA(2) antibody into ECs markedly inhibited the EC proliferation in response to CMs. With both CMs, phosphorylation of cPLA(2), PKCalpha, ERK1/2, protein and mRNA expression of cPLA(2) and iPLA(2), and COX-2 protein expression were significantly stimulated after 24 h coincubation, and attenuated by specific inhibitors. By confocal microscopy, activation of cPLA(2), ERK1/2, PKCalpha and COX-2 in perinuclear and membrane regions of ECs grown in CM-stimulated cultures were clearly observed. Thus MEK-PKCalpha-ERK1/2 and PI3-K/Akt survival pathways are activated in EC cultures during the interaction with CM from both melanoma cell lines, providing new insight in understanding EC metabolism and signaling. These pathways represent potential therapeutic targets to inhibit or enhance tumor angiogenesis.


Biochemical Pharmacology | 2017

P2X7 receptor antagonism: Implications in diabetic retinopathy

Chiara Bianca Maria Platania; Giovanni Giurdanella; Luisa Di Paola; Gian Marco Leggio; Filippo Drago; Salvatore Salomone; Claudio Bucolo

ABSTRACT Diabetic retinopathy (DR) is the most frequent complication of diabetes and one of leading causes of blindness worldwide. Early phases of DR are characterized by retinal pericyte loss mainly related to concurrent inflammatory process. Recently, an important link between P2X7 receptor (P2X7R) and inflammation has been demonstrated indicating this receptor as potential pharmacological target in DR. Here we first carried out an in silico molecular modeling study in order to characterize the allosteric pocket in P2X7R, and identify a suitable P2X7R antagonist through molecular docking. JNJ47965567 was identified as the hit compound in docking calculations, as well as for its absorption, distribution, metabolism and excretion (ADME) profile. As an in vitro model of early diabetic retinopathy, human retinal pericytes were exposed to high glucose (25 mM, 48 h) that caused a significant (p < 0.05) release of IL‐1&bgr; and LDH. The block of P2X7R by JNJ47965567 significantly (p < 0.05) reverted the damage elicited by high glucose, detected as IL‐1&bgr; and LDH release. Overall, our findings suggest that the P2X7R represents an attractive pharmacological target to manage the early phase of diabetic retinopathy, and the compound JNJ47965567 is a good template to discover other P2X7R selective antagonists.


European Journal of Pharmacology | 2016

TGF-β1 prevents rat retinal insult induced by amyloid-β (1–42) oligomers

Vincenzo Fisichella; Giovanni Giurdanella; Chiara Bianca Maria Platania; Giovanni Luca Romano; Gian Marco Leggio; Salvatore Salomone; Filippo Drago; Filippo Caraci; Claudio Bucolo

To set up a retinal degenerative model in rat that mimics pathologic conditions such as age-related macular degeneration (AMD) using amyloid-β (Aβ) oligomers, and assess the effect of TGF-β1. Sprague-Dawley male rats were used. Human Aβ1-42 oligomers were intravitreally (ITV) injected (10µM) in the presence or in the absence of recombinant human TGF-β1 (1ng/μl ITV injected). After 48h, the animals were sacrificed and the eyes removed and dissected. The apoptotic markers Bax and Bcl-2 were assessed by western blot analysis in retina lysates. Gene-pathway network analysis was carried out in order to identify pathways involved in AMD. Treatment with Aβ oligomers induced a strong increase in Bax protein level (about 4-fold; p<0.01) and a significant reduction in Bcl-2 protein level (about 2-fold; p<0.05). Co-injection of TGF-β1 triggered a significant reduction of Bax protein induced by Aβ oligomers. Bioinformatic analysis revealed that Bcl-2 and PI3K-Akt are the most connected nodes, for genes and pathways respectively, in the enriched gene-pathway network common to AMD and Alzheimer disease (AD). Overall, these data indicate that ITV injection of Aβ1-42 oligomers in rat induces molecular changes associated with apoptosis in rat retina, highlighting a potential pathogenetic role of Aβ oligomers in AMD. Bioinformatics analysis confirms that apoptosis pathways can take part in AMD. Furthermore, these findings suggest that human recombinant TGF-β1 can prevent retinal damage elicited by Aβ oligomers.


Neuroscience Letters | 2012

Involvement of PKCα–MAPK/ERK-phospholipase A2 pathway in the Escherichia coli invasion of brain microvascular endothelial cells

Mario Salmeri; Carla Motta; Silvana Mastrojeni; Andrea Amodeo; Carmelina Daniela Anfuso; Giovanni Giurdanella; Angela Morello; Mario Alberghina; Maria Antonietta Toscano; Gabriella Lupo

Escherichia coli K1 is the most common Gram-negative organism that causes neonatal meningitis following penetration of the blood-brain barrier. In the present study we demonstrated the involvement of cytosolic (cPLA(2)) and calcium-independent phospholipase A(2) (iPLA(2)) and the contribution of cyclooxygenase-2 products in E. coli invasion of microvascular endothelial cells. The traversal of bacteria did not determine trans-endothelial electrical resistance (TEER) and ZO-1 expression changes and was reduced by PLA(2)s siRNA. cPLA(2) and iPLA(2) enzyme activities and cPLA(2) phosphorylation were stimulated after E. coli incubation and were attenuated by PLA(2), PI3-K, ERK 1/2 inhibitors. Our results demonstrate the role of PKCα/ERK/MAPK signaling pathways in governing the E. coli penetration into the brain.


Microvascular Research | 2008

UV-O3-treated and protein-coated polymer surfaces facilitate endothelial cell adhesion and proliferation mediated by the PKCα/ERK/cPLA2 pathway

Fabio Formosa; Carmelina Daniela Anfuso; Cristina Satriano; Gabriella Lupo; Giovanni Giurdanella; Nicola Ragusa; Giovanni Marletta; Mario Alberghina

We examined the adhesion and proliferation of immortalized endothelial cells GP8.39 (ECs) onto polyethyleneterephtalate (PET) and polyhydroxymethylsiloxane (PHMS) thin films, functionalized by UV-O(3) treatment and/or protein immobilization. The modified surface topography showed partial oxidation for both polymers, a slight increase in wettability and monopolar basic character for PET, and a hydrophilic bipolar acid-base behaviour for PHMS. UV-O(3) treatment did not induce significant roughness changes (under 1 nm) as shown by atomic force spectroscopy measurements (AFM). The EC adhesion and spreading onto untreated and modified surfaces were investigated both before and after immobilization of collagen (CA) and fibronectin (FN) adlayers. AFM analyses showed an open-weave protein layer on both untreated polymers which became a tight-woven net after UV-O(3) irradiation of underlying films. On day 5 after seeding, cell count analyses on irradiated PET surfaces, CA/FN-coated or not, showed EC adhesion and proliferation significantly greater than those on untreated polymers, indicating that UV-O(3) irradiation promoted fast endothelialization. A less pronounced EC spreading behaviour on treated PHMS was observed. In ECs grown on irradiated and CA- or FN-coated PET, the levels of phospho-protein kinase Calpha (p-PKCalpha, phospho-ERK1/2, and phospho-cytosolic phospholipase A(2) (p-cPLA(2)), all enzymes taken as signaling markers of cell adhesion and proliferation, decreased in comparison to those in CA- or FN-coated untreated PET. In contrast, in ECs grown on UV-O(3)-treated PHMS, Western blot analyses showed increased levels of p-PKCalpha, p-ERK1/2 and p-cPLA(2) in comparison with cells grown onto untreated polymer. The growth response of ECs to the substrates was related to the changes of polarity properties of UV-O(3)-treated polymer films, from hydrophobic/neutral towards hydrophilic/charged layers, and the signaling pathway remodelling to the cell proliferation degree.

Collaboration


Dive into the Giovanni Giurdanella's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge