Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mario Alberghina is active.

Publication


Featured researches published by Mario Alberghina.


Journal of Lipid Research | 2007

Endothelial cell-pericyte cocultures induce PLA2 protein expression through activation of PKCα and the MAPK/ERK cascade

Carmelina Daniela Anfuso; Gabriella Lupo; Loriana Romeo; Giovanni Giurdanella; Carla Motta; Alessia Pascale; Cataldo Tirolo; Bianca Marchetti; Mario Alberghina

Little is known about the regulatory mechanisms of endothelial cell (EC) proliferation by retinal pericytes and vice versa. In a model of coculture with bovine retinal pericytes lasting for 24 h, rat brain ECs showed an increase in arachidonic acid (AA) release, whereas Western blot and RT-PCR analyses revealed that ECs activated the protein expression of cytosolic phospholipase A2 (cPLA2) and its phosphorylated form and calcium-independent intracellular phospholipase A2 (iPLA2). No activation of the same enzymes was seen in companion pericytes. In ECs, the protein level of phosphorylated extracellular signal-regulated kinase (ERK) 1/2 was also enhanced significantly, a finding not observed in cocultured pericytes. The expression of protein kinase C-α (PKCα) and its phosphorylated form was also enhanced in ECs. Wortmannin, LY294002, and PD98059, used as inhibitors of upstream kinases (the PI3-kinase/Akt/PDK1 or MEK-1 pathway) in cultures, markedly attenuated AA release and the expression of phosphorylated forms of endothelial cPLA2, PKCα, and ERK1/2. By confocal microscopy, activation of PKCα in perinuclear regions of ECs grown in coculture as well as strong activation of cPLA2 in ECs taken from a model of mixed culture were clearly observed. However, no increased expression of both enzymes was found in cocultured pericytes. Our findings indicate that a sequential activation of PKCα contributes to endothelial ERK1/2 and cPLA2 phosphorylation induced by either soluble factors or direct cell-to-cell contact, and that the PKCα-cPLA2 pathway appears to play a key role in the early phase of EC-pericyte interactions regulating blood retina or blood-brain barrier maturation.


Biochimica et Biophysica Acta | 2001

t-Butyl hydroperoxide and oxidized low density lipoprotein enhance phospholipid hydrolysis in lipopolysaccharide-stimulated retinal pericytes

Gabriella Lupo; Carmelina Daniela Anfuso; Nicola Ragusa; Robert P. Strosznajder; Michał Walski; Mario Alberghina

Free radicals induced by organic peroxides or oxidized low density lipoprotein (oxLDL) play a critical role in the development of atherosclerosis. In investigating this process, and the concomitant inflammatory response, the role of pericytes, cells supporting the endothelial ones in blood vessels, has received little attention. In this study we tested the hypothesis that tert-butyl hydroperoxide (t-BuOOH) and oxLDL, administered in sublethal doses to the culture medium of retinal pericytes, function as prooxidant signals to increase the stimulation of the peroxidation process induced by lipopolysaccharide (LPS). Confluent cell monolayers were exposed to t-BuOOH (25-400 microM), native LDL or oxLDL (3.4-340 nmol hydroperoxides/mg protein, 1-100 micro). LPS (1 microg/ml), t-BuOOH (200 microM), and oxLDL (100 microM), but not native LDL, incubated for 24 h with cells, markedly increased lipid peroxidation, cytosolic phospholipase A2 (cPLA2) activity and arachidonic acid (AA) release in a time- and dose-dependent manner. AACOCF(3), a potent cPLA2 inhibitor, and the antioxidant alpha-tocopherol strongly inhibited the prooxidant-stimulated AA release. Long-term exposure to maximal concentrations of t-BuOOH (400 microM) or oxLDL (100 microM) had a sharp cytotoxic effect on the cells, described by morphological and biochemical indices. The presence of t-BuOOH or oxLDL at the same time, synergistically increased phospholipid hydrolysis induced by LPS alone. 400 microM t-BuOOH or 100 microM oxLDL had no significant effect on the stimulation of an apoptosis process estimated by DNA laddering and light and electron microscopy. The results indicate that (i) pericytes may be the target of extensive oxidative damage; (ii) activation of cPLA2 mediates AA liberation; (iii) as long-term regulatory signals, organic peroxide and specific constituents of oxLDL increase the pericyte ability to degrade membrane phospholipids mediated by LPS which was used, in the present study, to simulate in vitro an inflammatory burst in the retinal capillaries.


Biochemical Pharmacology | 2013

Role of phospholipases A2 in diabetic retinopathy: In vitro and in vivo studies

Gabriella Lupo; Carla Motta; Giovanni Giurdanella; Carmelina Daniela Anfuso; Mario Alberghina; Filippo Drago; Salvatore Salomone; Claudio Bucolo

Diabetic retinopathy is one of the leading causes of blindness and the most common complication of diabetes with no cure available. We investigated the role of phospholipases A2 (PLA2) in diabetic retinopathy using an in vitro blood-retinal barrier model (BRB) and an in vivo streptozotocin (STZ)-induced diabetic model. Mono- and co-cultures of endothelial cells (EC) and pericytes (PC), treated with high or fluctuating concentrations of glucose, to mimic the diabetic condition, were used. PLA2 activity, VEGF and PGE2 levels and cell proliferation were measured, with or without PLA2 inhibition. Diabetes was induced in rats by STZ injection and PLA2 activity along with VEGF, TNFα and ICAM-1 levels were measured in retina. High or fluctuating glucose induced BRB breakdown, and increased PLA2 activity, PGE2 and VEGF in EC/PC co-cultures; inhibition of PLA2 in mono- or co-cultures treated with high or fluctuating glucose dampened PGE2 and VEGF production down to the levels of controls. High or fluctuating glucose increased EC number and reduced PC number in co-cultures; these effects were reversed after transfecting EC with small interfering RNA targeted to PLA2. PLA2 and COX-2 protein expressions were significantly increased in microvessels from retina of diabetic rats. Diabetic rats had also high retinal levels of VEGF, ICAM-1 and TNFα that were reduced by treatment with a cPLA2 inhibitor. In conclusion, the present findings indicate that PLA2 upregulation represents an early step in glucose-induced alteration of BRB, possibly upstream of VEGF; thus, PLA2 may be an interesting target in managing diabetic retinopathy.


Microvascular Research | 2010

Phospholipase A2: New lessons from endothelial cells

Mario Alberghina

The investigation of intracellular phospholipase A(2) (PLA(2)) enzymes in endothelial cells (ECs) seems interesting because it may contribute to unveil the mechanisms of biological processes such as angiogenesis, adhesion and transmigration of inflammatory cells, atherogenesis, blood brain barrier and tumor progression. To date, limited information is available regarding the function and regulation of three well characterized phospholipases, Ca(2+)-dependent cytosolic PLA(2) (cPLA(2)), Ca(2+)-independent PLA(2) (iPLA(2)) and secretory PLA(2) (sPLA(2)) along the intracellular signaling pathways in quiescent and proliferating ECs. PLA(2)s could be potentially involved in signaling cascades by which ECs promote the highly organized multicellular complexes consisting of either an endothelium, brain pericytes and astrocytes, or cellular constituents of the tumor microvasculature. This review will summarize recent findings on the presence and possible role attributed to PLA(2)s in a variety of EC lines grown alone, as well as in isolated cancer cell lines, or in co-cultures in which signal transduction and cross-talk mechanisms between tumor cells and ECs, largely undefined, begin to be unravelled.


Neurochemical Research | 1981

Effect of hypoxia on nucleic acid and protein synthesis in different brain regions

I. Serra; Mario Alberghina; M. Viola; A. M. Giuffrida

The incorporation of [methyl-3H]thymidine into DNA, of [5-3H]uridine into RNA, and of [1-14C]leucine into proteins of cerebral hemispheres, cerebellum, and brainstem of guinea pigs after 80 hr of hypoxic treatment was measured. Both in vivo (intraventricular administration of labeled precursors) and in vitro (tissue slices incubation) experiments were performed. The labeling of macromolecules extracted from the various subcellular fractions of the above-mentioned brain regions was also determined. After hypoxic treatment the incorporation of the labeled precursors into DNA, RNA, and proteins was impaired to a different extent in the three brain regions and in the various subcellular fractions examined; DNA and RNA labeling in cerebellar mitochondria and protein labeling in microsomes of the three brain regions examined were particularly affected.


Neurochemical Research | 1981

EFFECT OF CDP-CHOLINE ON THE BIOSYNTHESIS OF NUCLEIC ACIDS AND PROTEINS IN BRAIN REGIONS DURING HYPOXIA

I. Serra; Mario Alberghina; M. Viola; A. Mistretta; A. M. Giuffrida

The effect of CDP-choline on the in vivo incorporation of labeled precursors into DNA, RNA, and proteins in cerebral hemispheres, cerebellum, and brainstem of guinea pigs after hypoxic treatment was studied. The labeling of macromolecules extracted from the various subcellular fractions of these brain regions was also determined. Hypoxic treatment affected macromolecular labeling to a different extent in the three brain regions examined. CDP-choline treatment was not able to reverse the effect of hypoxia on DNA labeling, but it was able to remove the effect of hypoxia on RNA and protein labeling. The action of CDP-choline was particularly evident on the labeling of RNA in nuclei and mitochondria of the cerebellum and on the labeling of proteins in microsomes of the three brain regions examined.


Neurochemical Research | 2002

Effects of aging and amyloid-β peptides on choline acetyltransferase activity in rat brain

Agata Zambrzycka; Mario Alberghina; Joanna B. Strosznajder

Choline acetyltransferase (ChAT, acetyl-CoA:choline O-acetyltransferase, EC 2.3.1.6), involved in the learning and memory processes is responsible for the synthesis of acetylcholine. There are many discrepancies in literature concerning ChAT activity during brain aging and the role of amyloid beta peptides in modulation of this enzyme. The aim of the study was to investigate the mechanism of ChAT regulation and age-related alteration of ChAT activity in different parts of the brain. Moreover the effect of Aβ peptides on ChAT activity in adult and aged brain was investigated. The enzyme activity was determined in the brain cortex, hippocampus and striatum in adult (4-months-old), adult-aged (14-months-old) and aged (24-months-old) animals. The highest ChAT activity was observed in the striatum. We found that inhibitors of protein kinase C, A, G and phosphatase A2 have no effect on ChAT activity and that this enzyme is not dependent on calcium ions. About 70% of the total ChAT activity is present in the cytosol. Arachidonic acid significantly inhibited cytosolic form of this enzyme. In the brain cortex and striatum from aged brain ChAT activity is inhibited by 50% and 37%, respectively. The aggregated form of Aβ 25-35 decreased significantly ChAT activity only in the aged striatum and exerted inhibitory effect on this enzyme in adult, however, statistically insignificant. ChAT activity in the striatum was diminished after exposure to 1 mM H2O2. The results from our study indicate that aging processes play a major role in inhibition of ChAT activity and that this enzyme in striatum is selectively sensitive for amyloid beta peptides.


Neurochemical Research | 1988

Protein synthesis rates in rat brain regions and subcellular fractions during aging

R. Ayola; D. F. Condorelli; N. Ragusa; Marcella Renis; Mario Alberghina; A. M. Giuffrida Stella; Abel Lajtha

In vivo protein synthesis rates in various brain regions (cerebral cortex, cerebellum, hippocampus, hypothalamus, and striatum) of 4-, 12-, and 24-month-old rats were examined after injection of a flooding dose of labeled valine. The incorporation of labeled valine into proteins of mitochondrial, microsomal, and cytosolic fractions from cerebral cortex and cerebellum was also measured. At all ages examined, the incorporation rate was 0.5% per hour in cerebral cortex, cerebellum, hippocampus, and hypothalamus and 0.4% per hour in striatum. Of the subcellular fractions examined, the microsomal proteins were synthesized at the highest rate, followed by cytosolic and mitochondrial proteins. The results obtained indicate that the average synthesis rate of proteins in the various brain regions and subcellular fractions examined is fairly constant and is not significantly altered in the 4 to 24-month period of life of rats.


Journal of Neurochemistry | 1983

Changes in Rapid Transport of Phospholipids in the Rat Sciatic Nerve During Axonal Regeneration

Mario Alberghina; F. Moschella; M. Viola; V. Brancati; G. Micali; A. M. Giuffrida

Abstract: Axonal transport of phospholipids in normal and regenerating sciatic nerve of the rat was studied. At various intervals after axotomy of the right sciatic nerve in the midthigh region and subsequent perineurial sutures of the transected fascicles, a mixture of 60 μCi [Me‐HC]choline and 15 μCi [2‐3H]glycerol in the region of the spinal motor neurons of the L5 and L6 segments was injected bilaterally. The amount of radioactive lipid (and in certain cases its distribution in various lipid classes) along the nerve was determined as a function of time. Three days after fascicular suture and 6 h after spinal cord injection of precursors, there was an accumulation of labeled phospholipids and sphingolipids in the transected sciatic nerve in the region immediately proximal to the site of suture. Nine days after, there was a marked increase in the accumulation of radioactivity in the distal segments of the injured nerve, which increased up to 14 days after cutting and disappeared as regeneration proceeded (21–45 days). In all segments of both normal and regenerating nerve fibers, as well as in L5 and L6 spinal cord segments, only phosphatidylcholine and sphingomyelin were labeled with [14C]choline. These results suggest that the regeneration process in a distal segment of a peripheral neuron, following cutting and fascicular repairing by surgical sutures, is sustained in the first 3 weeks by changes in the amount of phospholipids rapidly transported along the axon towards the site of nerve fiber outgrowth.


Biochimica et Biophysica Acta | 2008

Expression of Ca2+-independent and Ca2+-dependent phospholipases A2 and cyclooxygenases in human melanocytes and malignant melanoma cell lines

Mariagrazia Rita Scuderi; Carmelina Daniela Anfuso; Gabriella Lupo; Carla Motta; Loriana Romeo; Liliana Guerra; Alessandro Cappellani; Nicola Ragusa; Giuseppina Cantarella; Mario Alberghina

We provide novel evidence that human melanoma cell lines (M10, M14, SK-MEL28, SK-MEL93, 243MEL, 1074MEL, OCM-1, and COLO38) expressed, at mRNA and protein levels, either Ca(2+)-independent phospholipase A(2) (iPLA(2)) or cytosolic phospholipase A(2) (cPLA(2)) and its phosphorylated form. Normal human melanocytes contained the lowest levels of both PLA(2)s. Cyclooxygenase-1 and -2 (COX-1 and COX-2) were also expressed in cultured tumor cells as measured by Western blots. The most pronounced overexpression of iPLA(2) and COX-1 was found in two melanoma-derived cells, M14 and COLO38. Normal human melanocytes and the M10 melanoma cell line displayed no COX-2 expression. Using subcellular fractionation, Western blot and confocal microcopy analyses, in paradigmatic SK-MEL28 and SK-MEL93 cells we showed that iPLA(2), COX-1 and even cPLA(2) were equally located in the cytosol, membrane structures and perinuclear region while COX-2 was preferentially associated with the cytosol. Specific inhibitors of these three enzymes significantly reduced the basal proliferation rate either in melanocytes or in melanoma cell lines. These results, coupled with the inhibition of the cell proliferation by electroporation of melanoma cells with cPLA(2) or COX-2 antibodies, demonstrate that a possible correlation between PLA(2)-COX expression and tumor cell proliferation in the melanocytic system does exist. In addition, the high expression level of both PLA(2)s and COXs suggests that eicosanoids modulate cell proliferation and tumor invasiveness.

Collaboration


Dive into the Mario Alberghina's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Viola

University of Catania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

N. Ragusa

University of Catania

View shared research outputs
Researchain Logo
Decentralizing Knowledge